ID Bloom Filter: Achieving Faster Multi-Set Membership Query in Network Applications

Peng Liu1*, Hao Wang1*, Siang Gao1, Tong Yang1,2, Lei Zou1, Lorna Uden3, Xiaoming Li3
Peking University, China1, Collaborative Innovation Center of High Performance Computing, NUDT, China2, School of Computing, Staffordshire University, UK3

Abstract — The problem of multi-set membership query plays a significant role in many network applications, including routers and firewalls. Answering multi-set membership query means telling whether an element belongs to the multi-set, and if yes, which particular set it belongs to. Most traditional solutions for multi-set membership query are based on Bloom filters. However, these solutions cannot achieve high accuracy and high speed at the same time when the memory is tight. To address this issue, this paper presents the ID Bloom Filter (IBF) and ID Bloom Filter with ones’ Complement (IBFC). The key technique in IBF is mapping each element to \(k \) positions in a filter and directly recording its set ID and its ones’ complement together. The experimental results show that our IBF and IBFC are faster than the state-of-the-art while achieving a high accuracy.

I. INTRODUCTION

A. Background and Motivations

Given \(s \) sets without intersection, the problem of multi-set membership query [1], [2] is to determine whether an incoming element belongs to the multi-set, and if yes, which set it belongs to. Multi-set membership query is a fundamental operation in many important network applications [3]–[6]. Online membership query is often operated on large datasets containing addresses, flow labels, signatures, etc. In a layer-2 switch, each destination MAC address is assigned to one unique port. When a packet is being forwarded, multi-set membership query needs to determine which port the packet should be forwarded to. The firewall also uses multi-set membership query to find out the suspicious level of each arrival packet, which is often determined by an intrusion detection system, and then takes certain follow-up actions.

Traditional exact-match data structures address the multi-set membership query problem, such as binary search tree and trie, store both keys and values, thus they suffer from huge memory and time overhead. When a low error rate is allowed, an alternative to solve this problem is the Bloom filter [7] [8], which is a compact probabilistic data structure that can tell whether an element exists in a single set with no false negative. Due to its small memory footprint and fast speed, most existing solutions to the problem of multi-set membership query are based on Bloom filters.

B. Limitations of Prior Art

A Bloom filter is a bit array with each bit set to \(0 \) during initialization. When inserting an element, it uses \(k \) hash functions to map the element to \(k \) bits and set them to \(1 \). When querying an element, it hashes the element to \(k \) bits and checks the \(k \) corresponding bits. If they are all \(1 \), the element is claimed to be in the set; otherwise, the element does not belong to the set.

Combinatorial Bloom filter [9] is a typical Bloom filter based data structure for multi-set membership query, which contains one Bloom filter \(B \) and several groups of hash functions, and the \(i \)-th group has \(k \) hash functions \(h_{1,i}(\cdot), h_{2,i}(\cdot), \ldots, h_{k,i}(\cdot) \), associated with the \(i \)-th bit of the code of set ID. Each set ID is encoded into a \(l \)-bit constant weight code, which has a constant number of \(1 \) bits for different set IDs. To insert an element \(e \) with set ID \(S_e \), if the \(i \)-th \((1 \leq i \leq l) \) bit of \(S_e \) is \(1 \), \(e \) is mapped to \(k \) positions \(B[h_{1,i}(e)], B[h_{2,i}(e)], \ldots, B[h_{k,i}(e)] \), and these bits are set to \(1 \). To query an element \(e \), if the bitwise AND result of \(B[h_{1,i}(e)], B[h_{2,i}(e)], \ldots, B[h_{k,i}(e)] \) is \(1 \), the \(i \)-th bit of the estimated code is set to \(1 \). For each query, Combinatorial Bloom filter needs to perform \(k \cdot l \) memory accesses, thus its query speed is low, which will be improved by our algorithms.

C. Our Proposed Approach

In this paper, we propose the ID Bloom Filter (IBF) as well as its enhanced version ID Bloom Filter with ones’ Complement (IBFC) to address the problem of multi-set membership query. The key idea of IBF is to record the set membership information directly in the mapped positions of each element.

The data structure of IBF and IBFC is composed of an array and \(k \) independent hash functions. The initialization of IBF and IBFC is to set all the bits in the array to \(0 \). IBF and IBFC both have two operations: insertion and query. We will first present a brief introduction to the operations of IBF, and then discuss the advantages of IBFC.

To insert an element \(e \) into IBF, we perform \(k \) hash computations and get \(k \) positions in the array. For each position, we do a bitwise OR operation between \(e \)’s set ID and the binary string starting from the position. To query an element \(e \), we
also perform \(k \) hash computations and get \(k \) positions in the array. For each position, we retrieve a binary string, and then AND these \(k \) binary strings to get the estimated set ID for \(e \). The limitations of IBF is that it may produce false results during queries because of hash collisions, and it cannot detect whether the query results are correct or not.

To address the limitations, we propose IBF, which could detect the false results and return an Error during queries with a high possibility. IBF improves the way of set ID encoding. To insert an element, we concatenate its set ID and the ones’ complement of set ID, both in binary format, and then do bitwise OR operations at \(k \) positions to record the set ID information. To query the membership of an element, after computing the \(k \) positions, we retrieve \(k \) binary strings starting from these positions, and then AND these \(k \) binary strings to get an estimated binary string. Finally, we check the correctness of the above binary string, and give an estimated set ID if no Error is reported.

Key Contributions:

1. We proposed a novel Bloom filter and its enhanced version, namely IBF and IBFC, that directly store the set ID into each mapped positions of elements.
2. We have conducted extensive experiments with real datasets of flow traces, and the experimental results show that compared to the state-of-the-art, the processing speed of IBF and IBFC is greatly higher, and IBFC can detect more errors.

II. RELATED WORK

Many works have been conducted addressing the problem of multi-set membership query, a large proportion of which are Bloom filter variants, such as Summary Cache [10], Coded Bloom Filter [11], [12], Bloomier Filter [13], [14] and Shifting Bloom Filter [15], [16]. Those variants are discussed briefly as follows.

Fan et al. proposed a scalable web cache sharing approach called Summary Cache, which contains \(s \) bloom filters where \(s \) is the number of distinct sets, and assigns each filter to a set. During insertion, it performs \(k \cdot s \) hash computations to record an element, where \(k \) is the number of hash functions for each bloom filter. During query, it also performs \(k \cdot s \) hash computations to query a set ID. This approach is straightforward yet inefficient in terms of speed, due to its large amount of memory accesses.

The Coded Bloom filter and Bloomier filter are both composed of multiple bloom filters. They both convert the set ID of an element to a binary string but use different ways to record the string. The Coded Bloom filter assigns one bloom filter for each bit of the string. It inserts an element into bloom filters according to the \(i \) bits of the string, and lookups element by checking all the bloom filters. This approach still has an insufficient query speed. The Bloomier filter contains two groups of Bloom filters and performs insertions for an element based on whether the bit of the string is 0 or 1. This approach has a higher query speed at the cost of not supporting dynamic insertion.

Shifting Bloom filter [16] is composed of one Bloom filter and \(k \) hash functions, and uses offsets to record the information of the set ID. To insert an element, it maps the element to \(k \) positions in the bit array, offsetting the \(k \) positions by a certain amount relevant to the set ID, and then set the \(k \) new positions to 1. To query an element, it performs \(k \) hash computations and checks \(s \) bits after these \(k \) positions, where \(s \) is the number of sets. However, it still has a large number of memory accesses.

III. DESIGN OF IBF AND IBFC

In this section, we first describe the data structure, insertion and query operations of ID Bloom Filter (IBF), addressing its limitations, and then discuss the operations and advantages of an enhanced version, ID Bloom Filter with ones’ Complement (IBFC). Table I summarizes the notations used in this paper.

TABLE I

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>a bit array</td>
</tr>
<tr>
<td>(m)</td>
<td>number of bits in (B)</td>
</tr>
<tr>
<td>(B[i])</td>
<td>(i)-th bit in (B)</td>
</tr>
<tr>
<td>(k)</td>
<td>number of hash functions</td>
</tr>
<tr>
<td>(h_j(\cdot))</td>
<td>(j)-th hash function ((1 \leq j \leq k))</td>
</tr>
<tr>
<td>(s)</td>
<td>number of different sets</td>
</tr>
<tr>
<td>(l)</td>
<td>maximum coding length of set ID</td>
</tr>
<tr>
<td>(S_e)</td>
<td>binary set ID of element (e)</td>
</tr>
<tr>
<td>(C_e)</td>
<td>ones’ complement of (S_e)</td>
</tr>
<tr>
<td>(V_e)</td>
<td>bit string we record in (B) for element (e)</td>
</tr>
<tr>
<td>(V_e[i])</td>
<td>(i)-th bit of (V_e)</td>
</tr>
<tr>
<td>(v_e(i))</td>
<td>an (i)-bit string starting from (B[h_i(e)])</td>
</tr>
<tr>
<td>(w_e)</td>
<td>number of 1 bits in (S_e)</td>
</tr>
<tr>
<td>(n)</td>
<td>number of distinct elements in all sets</td>
</tr>
</tbody>
</table>

A. ID Bloom Filter (IBF)

Data structure: The data structure of IBF is an array \(B \) composed of \(m \) bits, the \(i \)-th of which is denoted as \(B[i] \). IBF and IBFC are both associated with \(k \) independent hash functions, \(h_1(\cdot), h_2(\cdot), \ldots, h_k(\cdot) \), whose outputs are uniformly distributed in range \([1,m]\). The initialization operation of IBF and IBFC is to set all the bits to 0.

Insertion: To insert an element \(e \) with set ID \(S_e \), first, \(e \) is mapped by \(k \) hash functions to \(k \) positions \(B[h_1(e)], B[h_2(e)], \ldots, B[h_k(e)] \). Then, for each of the \(k \) positions \(B[h_i(e)] (1 \leq i \leq k) \), we perform a bitwise OR
operation between \(V_e \) and the \(l \)-bit binary string starting from \(B[h_i(e)] \), denoted as \(v_i(e) \), and store the result back into the \(l \) bit positions starting from \(B[h_i(e)] \), where \(V_e \) is the binary format of set ID \(S_e \). If \(h_i(e) + l - 1 > m \), we store the extra bits into the first several bits of \(B \). Specifically, we set \(B[(h_i(e) + j)\%m] = B[(h_i(e) + j)\%m] \text{ OR } V_e[j] \), \(1 \leq i \leq k \), \(0 \leq j \leq l - 1 \), where \(\% \) meas modular operation.

For example, to insert an element \(e \) with set ID \(S_e = 9 \), as shown in Fig. 1, we first locate three positions by computing \(h_1(e), h_2(e), h_3(e) \), and the \(4 \)-bit binary strings starting from these positions are \((0100)_2, (0010)_2, (1110)_2 \). For each position, we do a bitwise \(\text{OR} \) operation between \((1001)_2 \) and the \(4 \)-bit binary string, and record the result at the same position. Thus, the three binary strings are changed to \((1101)_2, (1101)_2, (1110)_2\).

Query: To query the membership of an element \(e \), first we calculate \(k \) hash functions and locate \(k \) positions in \(B: B[h_1(e)], B[h_2(e)], \ldots, B[h_k(e)] \). Then, we fetch \(k \) \(l \)-bit binary strings starting from the above \(k \) positions, denoted as \(v_1(e), v_2(e), \ldots, v_k(e) \), and \(\text{AND} \) them together to get the result \(V_e \). Specifically, \(V_e = v_1(e) \text{ AND } v_2(e) \text{ AND } \ldots \text{ AND } v_k(e) \). Finally, we return \(V_e \) as the set ID.

For example, to query an element \(e \), as shown in Fig. 1, we first locate three positions \(h_1(e), h_2(e), h_3(e) \), and fetch \(4 \)-bit binary strings starting from these positions, which are \((1011)_2, (1011)_2, (1111)_2 \). Then, we compute \((1011)_2 \text{ AND } (1011)_2 \text{ AND } (1111)_2 \) and get the estimated set ID \((1001)_2 = 9 \) for \(e \).

Limitations: Based on the Bloom filter, a probabilistic data structure, IBF will suffer from mis-classification and false positive. Mis-classification means that an element from set \(i \) is reported to be in set \(j \), where \(i \neq j \). False positive means that an element that does not belong to the multi-set is reported to be in a certain set. Those two kinds of errors are a direct consequence of bit sharing in bloom filters, which means a bit can be set by different elements from different sets. Suppose we are inserting an element \(e \) whose set ID is 18, we insert \((10010)_2\) at \(k \) positions in \(B: B[h_1(e)], B[h_2(e)], \ldots, B[h_k(e)] \). Unfortunately, we set \(B[(h_i(e) + 1)\%m] = 1 \) \((1 \leq i \leq k) \) during the insertion of other elements. Therefore, we get a wrong estimated set ID \((10101)_2\) instead of the right one \((10010)_2\) for \(e \), which is a mis-classification. Because IBF cannot detect errors, mis-classification and false positive may occur using IBF.

B. IBF with ones’ Complement (IBFC)

Motivation: To address the limitations, especially the mis-classification, of IBF, we propose an enhanced version of IBF, namely the IBF with ones’ complement (IBFC). The data structure of IBF is the same as that of IBF, and the insertion and query operations are changed as follows.

Insertion: The insertion of IBFC is almost the same as that of IBF, except that \(V_e \) is the \((2 \cdot l)\)-bit concatenation of set ID \(S_e \) and ones’ complement of \(S_e \), both in binary format. And when performing a bitwise \(\text{OR} \) operation, the length of the binary string is \(2 \cdot l \).

Query: The query of IBFC is almost the same as that of IBF, except that \(v_i(e) \) is a \((2 \cdot l)\)-bit string starting from \(B[h_i(e)] \). After getting the bitwise \(\text{AND} \) result \(V_e \), which is \((2 \cdot l)\)-bit long, we check if the former \(l \)-bit binary string is the ones’ complement of the latter \(l \)-bit binary string. And if it is the case, return the former \(l \)-bit binary string as the set ID; if the bitwise \(\text{OR} \) result of the two strings has a 0 bit, report that \(e \) does not belong to the multi-set; otherwise, return Error.

Advantages over IBF: The advantages of IBF utilizing ones’ complement are twofold. On the one hand, ones’ complement helps us to verify the correctness of an estimated set ID. As discussed in the limitations of IBF, mis-classification may occur when using IBF. However, due to the ones’ complement of every set ID, when querying the membership of an element, before returning the final result, IBFC will check if the estimated set ID matches its ones’ complement, which will actually eliminate the problem of mis-classification of IBF, as is proved in the next paragraph. On the other hand, IBFC is more “fair” than IBF, regarding the elements from different sets. In IBF, elements from different sets, when encoded into the bit strings, will write different numbers of 1, because the binary representations of different set IDs will have different numbers of 1. However, IBFC will concatenate set ID and its ones’ complement, thus the number of 1 will always be \(l \), which is half of the length of \(V_e \). Therefore, the distribution of elements among the multi-set will not affect the performance of IBFC and elements from different sets will have the same overall accuracy. This feature helps us to determine the memory size allocated for IBFC, which is related to the number of bits to be set to 1 in \(B \).

Error Types of IBFC: Mis-classification will never occur when using IBFC. When querying an element \(e \), we check all bit pairs \(B[(h_i(e) + j)\%m], B[(h_i(e) + j + l)\%m] \) \((1 \leq i \leq k, 0 \leq j \leq l - 1) \), and divide them into three cases: 1) There are one or more \((0, 0)\) bit pairs, IBFC claims that \(e \) does not belong to any of the sets. 2) There are \((0, 0)\) pair but one or more \((1, 1)\) pairs. Some of the \(1 \) bits are wrong and IBFC claims that a conflict classification (which will be explained below) happens. For example, we get an estimated binary string \((10110 01101)_2\) for \(e \) whose original set ID is \((10010)_2\), and we find that the 3rd bit and 8th bit of \((10110 01101)_2\) are both 1, but one of the two bits is supposed to be 0, so IBFC claims that it is a conflict classification. 3) If all pairs are \((0, 1)\) or \((1, 0)\), we use the number represented by the first half of \(V_e \) as the estimated set ID for \(e \), and the result is correct or a false positive, but mis-classification will not happen. Because if a collision ever happened in this case, it must have changed a pair from \((0, 0)\) to \((0, 1)\) or \((1, 0)\), and mis-classification requires the element belongs to a certain set, so pair \((0, 0)\) will never exist in that case.

From the above discussion we can derive that IBFC will suffer from conflict classification and false positives but not from mis-classification [17]. Conflict classification means that, when querying an element \(e \) from a certain set, IBFC cannot
definitely determine the set ID of e but can provide several candidate sets one of which e must belong to.

IV. MATHEMATICAL ANALYSIS

A. Theoretical Analysis of IBF

Let m be the number of bits in the IBF, s be the number of sets, c be the number of bits to represent a set ID, k be the number of hash functions, and n be the number of inserted elements.

Let P be the probability that the query result of any element has one more 1 bit than the correct result, which means a certain bit of the query result has been changed from 0 to 1 because of collision. Let n_i be the size of S_i, and w_i be the number of 1 bits in the binary format of set ID i, then we can calculate that:

$$P = (1 - \prod_{i=1}^{s} (1 - \frac{w_i}{m})^{n_i,k}).$$ (1)

Proof. Let b be any of the 0 bit in B. During an insertion, the B will be modified by k different c-bit strings. The probability that b is covered by a c-bit string is c/m, and when it occurs, the probability that b is set to 1 is w_i/c. Therefore, the probability that b is not set to 1 by a c-bit string is $1 - w_i/m$, and the probability that b is not set to 1 after all the n_i elements from S_i have been inserted is $(1 - \frac{w_i}{m})^{n_i,k}$, considering each element brings k c-bit strings. Thus, the probability that b is not set to 1 after elements from s sets have all been inserted is $\prod_{i=1}^{s} (1 - \frac{w_i}{m})^{n_i,k}$. Finally, to make a query result, which is the bitwise AND result of k binary strings, have one more 1 bit, k corresponding bits have to be changed from 0 to 1. Therefore, we can conclude that $P = (1 - \prod_{i=1}^{s} (1 - \frac{w_i}{m})^{n_i,k}).$ □

Let F_{pr} denote the probability of false positive of IBF. For IBF, the query result of an element not belonging to any of the sets is 0, and such an element will get a correct result if none of the c bits in the bitwise AND result has been changed to 1, whose probability is $(1 - P)^c$. Thus, we conclude that:

$$F_{pr} = 1 - (1 - P)^c.$$ (2)

Let F_{mis}^j be the probability of mis-classification of an element from S_j. Mis-classification occurs when several 0 bits of set ID j have been changed to 1 in the query result. There are $c - w_j$ 0 bits in set ID j, and the probability that none of them has been changed to 1 is $(1 - P)^{c-w_j}$. Therefore, we can conclude that the probability of mis-classification of an element from S_j is:

$$F_{mis}^j = 1 - (1 - P)^{c-w_j}.$$ (3)

According to Eq. 2 and Eq. 3, F_{pr} and F_{mis}^j are positively related to P. We calculate the minimum value of P in order to minimize F_{pr} and F_{mis}^j. According to Eq. 1, P is a function of k given s, m and n_i ($1 \leq i \leq s$). k should be set to the following value to minimize P:

$$k = \frac{\ln 2}{\ln A},$$ (4)

where $A = \prod_{i=1}^{s} (1 - \frac{w_i}{m})^{n_i}$.

Proof. Let A denote $\prod_{i=1}^{s} (1 - \frac{w_i}{m})^{n_i}$, and $P = (1 - A^k)^k$. To minimize P, we take the first-order derivative of $\ln P$ with respect to k and get the following equation:

$$\frac{\partial}{\partial k} \ln P = \frac{\partial}{\partial k} \ln ((1 - A^k)^k)$$

$$= \ln (1 - A^k) - \frac{A^k \ln A^k}{1 - A^k}.$$ (5)

Let the above formula be 0, and we get $A^k = \frac{1}{2}$, which is also a global minimum point. Therefore, F_{pr} and P_{mis} are both minimized when P is minimized with $k = \frac{\ln \frac{1}{2}}{m/A}$. □

B. Theoretical Analysis of IBFC

Use the above notations and let $2 \cdot c$ be the number of bits to represent a set ID. Same as the definition of P, let P' be the probability that the query result of any element has one more 1 bit than the correct result. Then we can conclude that:

$$P' = (1 - (1 - \frac{c}{m})^{nk})^k.$$ (6)

Proof. Similar to the proof of Eq. 1, we replace w_i with c in the calculation of P and get

$$P' = (1 - \prod_{i=1}^{s} (1 - \frac{c}{m})^{n_i,k})^k$$

$$= (1 - (1 - \frac{c}{m})^{nk})^k.$$ (7)

□

Let F_{pr}' be the probability of false positive of IBFC. And we conclude that:

$$F_{pr}' = (1 - (1 - P')^2)^c.$$ (8)

Proof. IBFC reports that an element does not belong to the multi-set when the bitwise OR result of the former c-bit and the latter c-bit of V_e has one or more 0 bits. Therefore, false positive happens when all the c bit pairs $(V_e[j], V_e[j+c])$ ($0 \leq j \leq c-1$) have at least one 1 bit. The probability that $(V_e[j], V_e[j+c])$ remains (0,0) is $(1 - P')^2$. Therefore, the probability that all the c pairs have been changed is $(1 - (1 - P')^2)^c$, which is exactly the probability of false positive.

The conflict classification happens when the former c-bit string of V_e is not the ones’ complement of the latter c-bit string of V_e, which is because one or more 0 bits of V_e have been changed to 1. There are initially c bits that are 0 in V_e, and the probability that none of them has been changed to 1 is $(1 - P')^c$. Let P_{cf} denote the probability of conflict classification, and we get:

$$P_{cf} = 1 - (1 - P')^c.$$ (9)

To minimize F_{pr}' and P_{cf}, we take the derivative of $\ln F_{pr}'$ with respect to P' and get the following equation:

$$\frac{\partial}{\partial P'} \ln F_{pr}' = \frac{\partial}{\partial P'} (c \ln (1 - (1 - P')^2))$$

$$= 2c(1 - P') \frac{1}{1 - (1 - P')^2} > 0.$$ (10)
According to the above equation, we find that $F_{pr'}$ is minimized when P' is minimized. As for P_{cf}, it is minimized when P' is minimized, according to Eq. 9. Therefore, we have to find a proper value for k to minimize P'. The derivation process is similar to that of Eq. 4, and the value of k is:

$$k = -\frac{\ln 2}{\ln A} \approx \frac{m}{cn} \ln 2,$$

where $A = (1 - \frac{c}{m})^n \approx e^{-cn/m}$. Both $F_{pr'}$ and P_{cf} are minimized when $k = \frac{m}{cn} \ln 2$.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Metrics: To evaluate the performance of IBF and IBFC, we use false positive rate [18] and correct rate to measure their accuracy, and use number of memory accesses [19] and throughput to measure their speed.

Experimental Datasets: We use 10 sets of IP traces captured by the main gateway of our campus as the experimental datasets. Each flow in these IP traces is a five-tuple: source IP address, destination IP address, source port, destination port and the protocol type. And there are 10 million packets in each set, representing approximately 1 million distinct flows and divided into 255 different sets whose ID range from 1 to 255.

Implementation: We implement the insertion and query operations of Coded Bloom filter, Combinatorial Bloom filter, Shifting Bloom filter, IBF, and IBFC using C++ and use MurmurHash3 [20], which can hash fast and uniformly, to be their hash functions. The code length of each element is 8 bits, and in all our experiments, we allocate 6MB memory for each Bloom filter.

Computational Platform: All the experiments are performed on a machine with 12-core CPUs (24 threads, Intel Xeon CPU E5-2620 @2 GHz) and 62GB total DRAM memory running Ubuntu 14.04.

B. Accuracy

To measure the correct rate, we first insert all the flows from one dataset into the tested Bloom filter, and then query each flow in the tested Bloom filter and check if the query result is equal to its real set ID. As shown in Fig. 2, the correct rates of IBF and IBFC are high and comparable to that of Coded Bloom filter and Shifting Bloom filter, which are all around 95%. Combinatorial Bloom filter shows a relatively low correct rate because it suffers from the limited memory size provided.

To measure the false positive rate, we first insert all the flows from one dataset into the tested Bloom filter, and then query flows that are not in the dataset, checking if the tested Bloom filter can correctly report that it does not belong to the multi-set. As shown in Fig. 3, while the false positive rate of IBF is relatively high and comparable to Coded Bloom filter, it is still in an acceptable range, and the false positive rate of IBFC is comparable to that of Combinatorial Bloom filter and Shifting Bloom filter, which are all lower than 1%.

From the experimental results on correct rate and false positive rate, we can conclude that the performances of IBF and IBFC are comparable to prior art in terms of accuracy.

C. Speed

In this section, we measure the speed of IBF and IBFC in terms of number of memory accesses per insertion and query, and query throughput. We set the number of hash functions to 3 in the following experiments.

As is shown in Fig. 4, number of memory accesses per insertion of IBF and IBFC, which are 4 and 8 respectively, are observably lower than that of Combinatorial Bloom filter, Coded Bloom filter, and Shifting Bloom filter, which can be as high as 20, which proves that the speed of IBF and IBFC is indeed higher than the prior art in terms of number of memory accesses per insertion.

As is shown in Fig. 5, number of memory accesses per query of IBF and IBFC, which are 4 and 10 respectively, are observably lower than that of Combinatorial Bloom filter, Coded Bloom filter, and Shifting Bloom filter, which can be as high as 30, which proves that the speed of IBF and IBFC is indeed higher than the prior art in terms of number of memory accesses per query.

As discussed in section III, IBF and IBFC directly record the set ID into the Bloom filter, instead of combining different Bloom filters. Therefore, IBF and IBFC are expected to have a smaller number of memory accesses. More specifically, suppose each machine word is 64 bits and can be retrieved by one memory access. To query one element with set ID 255, 1 or 2 machine words are accessed using IBF or IBFC, whereas 4 or 5 machine words are accessed using Shifting Bloom filter.

As shown in Fig. 6, the throughput of IBF and IBFC, which are 0.4 Mips and 0.3 Mips respectively, are observably higher than that of Combinatorial Bloom filter, Coded Bloom filter,
IBFC have a smaller number of memory accesses. and Shifting Bloom filter has been released on GitHub [21].

From the above experimental results on accuracy and speed of IBF and IBFC, we can conclude that their accuracy are high enough, and their speed are much higher compared to the prior art. IBF and IBFC can be applied to many practical network applications.

VI. CONCLUSION

Multi-set membership query is a fundamental operation in many network applications such as firewalls and switches. In this paper, we propose a novel data structure, namely ID Bloom filter (IBF), which only needs a small constant number of memory accesses for each query while maintaining high accuracy by directly recording the set IDs in a bit array. To further improve accuracy, an enhanced version, IBF with ones’ complement (IBFC), is proposed. Extensive experimental results show that IBF and IBFC achieve a much higher speed than the state-of-the-art. IBF and IBFC can be well applied to many real-world network applications. All the related source code has been released on GitHub [21].