
Towards Domain-Specific Network Transport for Distributed DNN Training

Hao Wang1, Han Tian1, Jingrong Chen2, Xinchen Wan1, Jiacheng Xia1, Gaoxiong Zeng1

Wei Bai3∗, Junchen Jiang4, Yong Wang1, Kai Chen1

1iSING Lab, Hong Kong University of Science and Technology
2Duke University, 3Microsoft, 4University of Chicago

Abstract
Machine learning (ML) applications present rich character-
istics to underlying network transport, yet little work has
been done so far to systematically exploit these properties
in transport design. This paper takes the initiative to pursue
a domain-specific network transport, called MLT1, for
distributed DNN training that fully embraces several unique
characteristics of machine learning.

At its heart, MLT employs three simple-yet-effective
techniques to form a 3-step progressive scheme against long
tail latency caused by transient packet drops and queueing.
First, it leverages the independencies among gradient updates
to enable per-packet load balancing to minimize network
hotspots without worrying about packet re-ordering. Then, if
hotspot arises, it performs priority queueing/dropping based on
the layers and magnitudes of gradients to optimize the model
convergence. Lastly, if drop occurs, it enables bounded-loss
tolerance—a certain amount of gradient losses tolerated by
the DNN training without affecting the model accuracy. MLT
is readily deployable with commodity switches and imposes
minimal modifications on various DNN training libraries
(e.g., TensorFlow, MXNet and PyTorch) and communication
routines (e.g., PS and Ring All-reduce). We show, via both
testbed experiments and simulations, that MLT effectively
optimizes network tail latency and delivers up to 62.2% better
end-to-end training performance over prior work.

1 Introduction
Deep Neural Networks (DNNs) have been paramount to
modern machine learning applications in computer vision
(CV) [41, 57, 91] and natural language processing (NLP) [74,
99,102]. However, training DNNs can be notoriously slow, due
importantly to the sheer volumes of gradients that need to be
frequently shuffled. While individual forward/backward prop-
agations can be massively parallelized, typical DNN training
still includes 100s of iterations, each ending up with shuffling
massive gradients across 10s to 100s of workers, potentially
causing severe worst-case congestion and tail latencies and
slowing DNN training down to a crawl. Such communication
bottlenecks have been witnessed in production clusters and
reported in many literatures [33, 39, 50, 69, 78, 81, 100, 114].

To reduce the communication overhead in distributed DNN

∗Now with NVIDIA
1MLT: Machine Learning Transport for AI-centric Networking (AICN).

training, many solutions have been proposed recently. Some
of them attempt to reduce traffic volume at application layer
through gradient compression (e.g., sparsification [33,66,101]
or quantization [12]), while others seek to overlap communica-
tion and computation through tensor partitioning and transmis-
sion scheduling [39, 49, 81]. However, while these solutions
effectively optimize the average flow completion time (FCT) in
general, they are susceptible to transient queueing or loss which
could lead to severe tail FCT when network is under pressure.
As we show in §2.2, by reducing the total traffic volume, gradi-
ent compression can reduce the average FCT, but fails to avoid
the long tail FCT caused by sporadic packet loss in the network,
which adversely affects the DNN training performance.

One plausible way to tackle this problem is to borrow the
sophisticated datacenter network transport solutions such
as DeTail [110], pFabric [15], Homa [77] and NDP [38],
to name a few, to deep learning clusters. However, while
these advanced solutions can potentially deliver near-optimal
average or tail latencies, they are too complex by either
re-factoring the whole network stack from physical layer, or
requiring the support of specific switch ASICs (e.g., cutting
payload [38]), or assuming non-blocking network cores,
making them hard to deploy in practice.

In this paper, we ask: can we design a simple, effective yet
readily-deployable solution to the above problem? Motivated
by the special properties of machine learning (§3), we answer
the question affirmatively by presenting MLT (§4), a domain-
specific network transport that can optimize both average and
tail FCTs of distributed DNN training by exploiting a series
of ML-specific properties, in a progressive manner.

First, MLT exploits the property of inter-packet inde-
pendency to perform per-packet load balancing, which
minimizes network hotspots. Per-packet load balancing is
highly desirable by almost all prior datacenter solutions with
multi-pathing. However, none could really enjoy its benefit
without paying considerable cost for packet re-ordering, with
some of them backing off to flowlet as a compromise [13, 96].
Unlike traditional applications where one message often
contains multiple packets (thus order-dependent), we note that
messages in DNN training are essentially gradients, which
are small enough (32bits or less) to allow multiple messages
packed in one packet (thus order-free) (§3.1). By exploring
this, MLT can effectively minimize network hotspots with
perfect packet spraying without re-ordering concern.

Second, when hotspot arises, MLT performs priority

queueing or dropping at the switch based on the importance of
gradients in the packets. As elaborated in §3.3, we find that the
importance of a gradient depends on its position (i.e., DNN
layer) and magnitude. Typically, gradients of front layers are
less important than back layers due to the popular pre-training
technique used in CV and NLP applications: the front layers
are often pre-trained on large/generic datasets and thus need
fewer updates than the back layers [107]. Meanwhile, larger
gradients are more important than smaller ones, because large
gradients are critical for identifying the correlation between
the intermediate features and the final prediction result.

Lastly, if packet drop occurs, MLT resorts to its final
defense—bounded-loss tolerance—no retransmission up to a
certain packet loss fraction allowed by the approximate SGD-
based training, to protect against the long tail latency (§3.2).
In contrast to today’s all-or-nothing transport primitive (TCP
or UDP), MLT supports a bounded-loss tolerance transport
primitive: by intentionally ignoring packets (bounded by p)
delayed or lost in the network without retransmission, MLT
effectively cuts tail latency while still maintaining the same
model accuracy. We note that while such loss-tolerance prop-
erty has been used in prior work to reduce traffic volume [101]
at the application layer which reduces the average FCT, we
reuse it at the transport layer to cut the tail (§4).

We have implemented MLT (§5) with commodity switches,
integrated it with TensorFlow, MXNet and PyTorch, and
deployed it over our small-scale testbed with 64 RTX3090
GPUs. In our implementation, we only use basic switch
functions such as ECN/RED and priority queueing, and build
MLT transport protocol in user space without modifying
kernel network stack. Through extensive testbed experiments
and large-scale simulations (§6), we find that:

• Compared to the state-of-the-art in communication
optimization of DNN training (BytePS [52]), MLT achieves
up to 12.0%–62.2% training speedup across various DNN
models while maintaining the same accuracy (§6.1).

• Compared to the PyTorch FSDP [115] in fine-tuning
Large Language Models (LLMs) with fully sharded data
parallelism [115], MLT achieves up to 35.5% speedup
without affecting the fine-tuning process (§6.1).

• Compared to one of the best datacenter transports
(NDP [38]), MLT delivers comparable network perfor-
mance (in fact, 6.7%/10.3% lower average/tail FCTs)
under realistic ResNet50-induced traffic, with no switch
modification (§6.2).

• Each design component of MLT contributes effectively to
the ultimate performance of MLT (§6.3).

We believe MLT showcases a first step towards an AI-centric
networking design that systematically explores a series of
ML-specific characteristics. While many questions, from theo-
retical understanding of more ML algorithmics/characteristics
to practical real-world implementation/deployment, remain
open (§7), our exploration in MLT has shown early promise

Parameter
Servers

Workers

Data
Shards

𝝎 ∆𝝎

Figure 1: Data parallelism with Parameter Server
of this direction and hopefully could inspire this community
to think more on how to design AI-centric networking for ML
applications by exploiting its special properties.

2 Distributed DNN Training
2.1 Communication Overhead
Training basics: DNNs learn intricate representations on
large datasets. A training process refines a DNN model upon a
dataset for many epochs, each consisting of multiple iterations.
In each iteration: (1) The DNN model and a data partition
(or mini-batch) are taken as input; (2) the mini-batch travels
through the model from the first layer to the last layer, called
forward propagation (FP), and computes a loss; (3) with the
loss derived, it computes the gradients backwards from the
last layer to the first layer, called backward propagation (BP);
and finally (4) the gradients, which represent information
acquired from the mini-batch, are used to update the model
with optimization algorithms, normally Stochastic Gradient
Descent (SGD) [21, 54, 82].
Parallelism schemes: There are mainly two types of
parallelism schemes for distributed ML: Data Parallelism
(DP) and Model Parallelism (MP). DP aims to faster batch
processing speed while MP tries to achieve better memory
efficiency. When a single GPU can accommodate a model,
the mainstream approach is DP [52]. With the rise of LLMs,
even the latest H100 [9] GPU cannot fit an entire model. As a
result, researchers start to use MP. Some leverage pipelining to
enhance computational efficiency (pipeline parallelism [78]),
while others further divide a tensor across multiple GPUs
(tensor parallelism [90]). Nevertheless, recent wisdom, e.g. ,
ZeRO [84] and FSDP [115], eliminates memory redundancies
of DP and achieves comparable or better performance than
MP in terms of memory efficiency, especially for models that
are hard to evenly distribute [84]. Such DP approach can even
achieve super-linear speedup [84].

Therefore, in this paper, we focus on data parallelism
and leave others as future work (§7). To speed up with DP,
mini-batches of training data are distributed across multiple
machines (or workers) as shown in Figure 1. Different workers
share the same global model and independently compute gradi-
ents (with FP and BP) on their respective mini-batches. Then,
gradients from all workers are synchronized and aggregated
to update the global model2, using either Parameter Server

2There are three general approaches to model synchronization: Bulk
Synchronous Parallelism (BSP) [95], Asynchronous Parallel (ASP) [86],
and Stale Synchronous Parallel (SSP) [104]. Among them, BSP, in which all
workers need to train on the same iterations, is preferred in production due

RTOmin=200ms
RTOmin=10ms
RTOmin=1ms

Sp
ee

d
(im

ag
es

/s
ec

)

1

10

100

1000

Compression Ratio
1× 2× 4× 8× 16× 32×

(a) Training Speed (for one worker)

FC
T/

m
s

1

10

100

Compression Ratio
1× 2× 4× 8× 16× 32×

(b) Average Flow Completion Time

FC
T/

m
s

1

10

100

1000

Compression Ratio
1× 2× 4× 8× 16× 32×

(c) Tail Flow Completion Time

Figure 2: Time cost of training GoogleNet on ImageNet with different compression ratios and RTOmins in our testbed. Note
that the minimum RTOmin in Linux kernel is 1ms, and we also deep-dive microsecond level RTOmin with simulations in §6.3.
However, please note that the realistic RTOmin in production is set typically at millisecond level even though the base RTT could
be at microsecond level, mainly due to the reason explained in Footnote-3.

architecture [60] or collective routines like All-reduce [80]:
• Parameter Server (PS) [60] is a logically centralized

key-value store. In each iteration, workers pull new model
parameters from PS for training, and then push gradients
to PS for model updating. PS enables flexible parameter
synchronization pattern and is generally fault-tolerant.

• All-reduce [80] is a collective operation to sum up
gradients of all workers. A popular implementation is Ring
All-reduce [88], in which workers form a logical ring. Each
worker receives a chunk of gradients from one neighbor,
adds to its local copy, and sends the chunk to the other
neighbor, until all the gradients are aggregated. Compared
to PS, Ring All-reduce generates more uniform traffic
pattern, but has higher synchronization overhead due to the
smaller flow size and longer communication chain [27].

Communication overhead: The above gradient transmission
and model synchronization demand efficient network trans-
port [81]. In each iteration, each worker can send and receive
model gradients with tens to thousands of MBs [41,57,91]. As a
result, the network communication often takes a significant por-
tion of the total training time. This overhead has been observed
by many recent literatures [31, 33, 39, 50, 60, 63, 78, 81, 112].
For example, training AlexNet on 8 nodes requires more
than 26Gbps bandwidth to avoid blocking computation of
next iteration [112]. Recent measurement has also shown
that communication accounts for 90% of the total training
time over 32 GPUs [78]. Furthermore, as reported by a large
online service provider, due to the communication overhead,
the training performance is far from linear speed-up with an
increasing number of GPU servers in many of their internal
and publicly available training workloads [81].

2.2 Existing Solutions and Problems
There exist solutions to the above problems from different
angles, however, they all have shortcomings.
Gradient sparsification and quantization: One direct way
to optimize the communication overhead is to reduce traffic

to its simplicity and convergence properties over ASP/SSP [11, 35, 72, 78].
Furthermore, BSP also produces deterministic and reproducible results, which
are needed in hyper-parameter tuning [103]. For these reasons, we focus on
BSP in this paper and leave ASP/SSP for future exploration.

volume at application layer through gradient compression (e.g.,
sparsification [33, 66, 101] or quantization [12]). Specifically,
gradient sparsification reduces network traffic by filtering
near zero gradients, whereas gradient quantization represents
the gradients with lower-precision floating point numbers to
reduce traffic volume. While both approaches reduce overall
traffic volume, they do not make communication completely
immune to long-tail latency due to packet drops or queueing
from micro-burstiness.

To show the problem, we train GoogleNet [93], a widely
used model, on ImageNet [29] dataset with different com-
pression ratios from 1× (original) to 32× (93.8%). Our
testbed contains 64 RTX3090 GPUs connected by 25Gbps
bandwidth. The detailed setup is in §6.1.1. For training, we
adopted the PS architecture and set the number of servers
equal to that of workers [81]. During the communication,
workers send gradient updates simultaneously to workers
or PSes, which may elicit a pathological phenomenon called
incast [24] congestion. As RTOmin, short for minimum
retransmission timeout, matters for the impact of incast [24],
we conduct the experiments with different RTOmin values:
200ms—the default value for Linux, 10ms—a common setting
of previous works [25], 1ms—the minimum setting for Linux
(release version) [24].3 To exclude the overhead of gradient
compression operations, we simulate the compression process
by directly modifying the gradient’s length. As reference, the
computation time of GoogleNet is about 30ms for a worker
in one iteration. To emulate a multi-job environment, we also
run two concurrent background DNN training tasks.

Figure 2 shows the experimental results. One key observa-
tion is that the improvement on training speed is quite limited
even with a significant gradient compression (Figure 2(a)),
e.g., a 32× compression in traffic volume only translates to
1.36-2.4× improvement in training speed. The root cause
behind is shown in Figure 2(b)(c): while the gradient compres-

3For theoretical analysis, we also simulate the microsecond level
RTOmin in §6.3, however, in practice, RTOmin in production clusters is
typically set at millisecond level to avoid spurious retransmissions under large
queue-buildups. Today’s commodity switches use shared buffer management
to improve burst tolerance, thus causing high queueing delay. For example,
Broadcom Trident II [116] with 12MB shared buffer and 32 40G ports can
cause up to 12MB/40Gbps=2.4ms queueing delay per hop.

sion reduces the average FCT steadily from 15.3ms to 1.1ms,
the tail FCT, which decides the ultimate communication time
of one iteration, remains high. For large RTOmin = 200ms,
one retransmission timeout costs at least 200ms delay, so the
tail FCT is above 200ms. For smaller RTOmin=10ms or 1ms,
we find that the actual RTO is not determined by RTOmin, and
our measurement shows that the actual RTO is 48ms in case
of 32× compression, which is largely caused by consecutive
losses and spurious retransmissions. Consider the ∼30ms
computation time, such long-tail latency compromises the
overall training efficiency, undermining the benefit brought
by gradient compression.

The reader may wonder if operators can deploy priority flow
control (PFC) [1] to eliminate congestion loss, thus mitigating
long tail latency shown above. However, many studies
have shown that PFC causes a series of performance (e.g.,
congestion spreading and unfairness [116]) and management
problems (e.g., PFC storm and even deadlock [36]). In a
PFC-enabled network, a flow can be paused due to congestion
that is not even on its path. Moreover, PFC cannot eliminate
packet losses due to link failure, including both fail-stop failure
and gray failure [48]. Essentially, the head-of-line blocking
nature of PFC makes the network difficult to understand and
manage, and we leave it for future exploration.

Computation/communication overlapping and scheduling:
Most DNN training frameworks (e.g., MXNet, PyTorch and
TensorFlow) and Poseidon [112] overlap communication with
backward propagation (BP). Instead of waiting for BP on all
DNN layers, they send gradients as soon as one DNN layer is
processed, pipelining the gradient transmission of some layers
with the gradient computation of other layers. Building on Po-
seidon, P3, TicTac [39] and ByteScheduler/BytePS [52,81] fur-
ther overlap communication of the current iteration with the for-
ward propagation (FP) of the next iteration through tensor par-
titioning and priority-based transmission scheduling. Despite
being helpful, these solutions are still insufficient because, by
design, such DNN structure-level overlappings do not directly
solve the tail latency issue shown in Figure 2. Furthermore, they
ignore the network as they are purely endhost-based solutions,
but network switches are unaware of such application-level
priorities when choosing which packets to queue or drop.

Advanced datacenter transport: One plausible way to tackle
the tough tail latency could be introducing the sophisticated
datacenter network transport solutions such as DeTail [110],
pFabric [15], Homa [77] and NDP [38], etc., to deep learning
clusters. These deliberately designed solutions can potentially
deliver near-optimal average or tail latencies, which may
effectively solve the issues in Figure 2. However, the downside
is that these solutions are typically too complex, e.g., either
re-factoring the whole network stack from physical layer,
or requiring switch hardware modifications (e.g., cutting
payload [38]), or assuming non-blocking network cores,
making them hard to deploy in practice.

3 Observations and Opportunities
We seek an effective yet readily-deployable solution without
much complexity. By exploiting the domain-specific prop-
erties of DNN training, we make the following observations
which provide insights for our design.

3.1 Packets Are Order-Independent
Unlike many other applications, packets in DNN training can
tolerate out-of-order delivery. This is because in traditional
applications, the application data unit or message usually
spans multiple packets, and therefore, ordering needs to be
maintained among packets of a message. In contrast, in DNN
training context, the message is just a gradient or parameter,
which is typically represented as a 32-bit floating pointer
number [60]. Therefore, multiple message can be packed
within one packet, and packets can be interpreted indepen-
dently. Such inter-packet order-independency provides an
opportunity for packet-level load balancing in the network.

Meanwhile, the traffic in DNN training is predictable. To
enhance communication efficiency, DNN training frameworks
divide a tensor into buckets, e.g., the default maximum bucket
size in PyTorch [79] is 25MB. To better overlap communica-
tion with computation, BytePS [52] implements tensor parti-
tioning with a default size of 4MB. Such pre-determined maxi-
mum bucket or partition sizes facilitate tensor re-construction
at the receiver end.

3.2 Packet Losses Are Bound-Tolerant
SGD-based DNN training is essentially an approximation
algorithm which estimates better parameter values based on
gradients calculated from mini-batches [21, 62]. It can tolerate
loss for two main reasons: (1) gradient loss from workers
results in dynamic mini-batch sizes instead of directly causing
errors, as SGD updates the model with the average gradient
values collected from workers, the expected gradient for
update can be unbiased under certain random loss; (2) even if
an error occurs, it will self-heal automatically. This is because
in each round SGD recalibrates the gradient vector towards
the optimal based on the current model weights, errors caused
by loss in the earlier iterations will not be propagated to the
latter ones. Recent work [108] has theoretically proven that,
under random loss, this algorithm can converge within the
same magnitude of iterations.

Before using this property, we try to understand it more
precisely. We simulate the scenario of distributed SGD on
different DNN models, and randomly set the gradients to be
0 with ratio p to simulate packet losses in the network. To
quantify the impact, we first train the baseline (no loss) for
500 iterations, which is large enough to make the test accuracy
almost constant for all the models and datasets. The final test
accuracy value is set as Quality Target [4]. Then, we measure
the rounds needed to reach the Quality Target for each ratio
p. This approach is the same as MLPerf [4], a well-known
ML benchmark. We repeat each measurement for 10 times

Bounded-loss ratio (p) 0%-1% 1%-2% >2%

GoogleNet [93] (0.7%) LSTM [42] (0.8%) ResNet34 [41] (1%) Wide ResNet50 [109] (2.4%)
Model AlexNet [57](0.8%) VGG16 [91] (0.8%) GRU [26] (1.2%) ResNet50 [41] (2.4%)

EfficientNetB0 [94] (0.8%) VGG19 [91] (0.9%) Wide ResNet101 [109] (1.3%) ShuffleNetV2 [71] (2.5%)
VGG13 [91] (0.9%) ResNet18 [41] (0.9%) DenseNet169 [47] (1.6%) ResNet101 [41] (3.3%)

Table 1: The bounded-loss tolerance property for a wide range of DNN models. For LSTM and GRU models, we train them as
NLP tasks using Wikitext-2 [75]; Other models are trained as CV tasks using ImageNet100 [7].

Model GoogleNet GRU

Dataset Cifar100 Caltech101 Wiki.-2 Wiki.-103
Grad. loss 0.8% 0.8% 1.2% 1.4%

Table 2: Loss-tolerant bounds for different datasets

LSTM

C
on

v.
 R

ou
nd

60
70
80
90
100

Random Data Loss Probability(%)
0 2 4 6 8 10

Resnet50

C
on

v.
 R

ou
nd

50

60

70

80

Random Data Loss Probability(%)
0 2 4 6 8 10

Figure 3: Impact of loss on model convergence: when the loss
ratio is below 0.8% (for LSTM) and 2.5% (for ResNet50), the
models converge with the same rounds to the same accuracies,
indicating loss-tolerance.
and calculate the average. Figure 3 shows the example results
of LSTM [42] and ResNet50 [41] trained on Wikitext-2 [75]
and Cifar100 [56] datasets. We find that: (1) when the loss
ratio is below 10%, we can achieve the Quality Target; and
(2) when the loss ratio is below 0.8% (for LSTM) and 2.5%
(for ResNet50), we can achieve this with exactly the same
rounds. We further validate this feature across a wide range of
DNN models using several general training datasets. Table 1
summarizes the results for these models, achieving the Quality
Target with the same rounds.

We refer to this feature as bounded-loss tolerance: DNN
training can tolerate a certain fraction p of data loss while
still converging with the same iterations to the same accuracy.
Despite our fine-grained profiling above, we note that the
general property of tolerating gradient loss in DNN training
is not new and has been explored in prior works [44, 101, 108].
However, while these existing solutions leverage it for
reducing traffic volume [101] or designing reliable PS
algorithms [108] at application layer to reduce average FCT,
our paper reuses it at network transport layer to cut the tail (§4).

In addition, while different models may have different loss
tolerance bounds, we observe that the bounds of one model for
different datasets we used remain similar. We show a case in
Table 2, in which the bounds for GoogleNet over Cifar100 [56]
and Caltech101 [34] are the same, while the bounds for GRU
over Wikitext-2 and Wikitext-103 [75] only differ by 0.2%.
This enables us to profile the loss tolerance bound values for
general DNN models4.

4We note that in practice the bound of a model may vary if datasets differ
greatly in some aspects. To explore the loss tolerance bound of a model on
a large dataset, one practical way is to use the tolerance bound derived from
a smaller sampled sub-dataset from the original dataset as an approximation.
Through experiments, we find that the loss tolerance bounds remain almost
the same between the sampled sub-dataset and the original dataset. We leave

Back
Middle
Front

C
on

v.
 R

ou
nd

20

30

40

Random Data Loss Probability(%)
0 0.4 0.8 1.2 1.6

(a) Loss on different layers

Large
Medium
Small

C
on

v.
 R

ou
nd

20

30

Random Data Loss Probability(%)
0 0.4 0.8 1.2 1.6 2.0

(b) Loss with different values
Figure 4: Gradient losses on different NN layers (a) and with
different magnitudes (b) generate different impacts on model
convergence.

3.3 Packets/Gradients Differ in Importance
We observe that different gradients have different impacts
on DNN training, depending on their layer positions in
DNNs [111], and their magnitudes [44].

First, for convergence, gradients of front layers are often less
important than back layers due to the prevalent pre-training
technique used in CV and NLP applications. Taking CV as
an example, front layers extract low-level features such as
edges and corners, whereas back layers learn more complex
concepts like shapes of certain object. Due to the generality of
low-level features across different tasks and datasets, people
often pre-train the front layers of their DNNs on large and
generic datasets, e.g., ImageNet [29], and then fine-tune them
over the target dataset, which will accelerate the training and
improve the model performance [107]. With per-training,
the front layers extracting low-level features are generally
well learned, thus need fewer updates than the back layers.
Meanwhile, gradients of front layers are more urgent when
pipelining strategies [50, 81] are employed, because the FP
can start once the front-layer gradients are received.

To illustrate the impact of gradient loss on different
layers, we train ResNet50 on Cifar100 [56] during which
we randomly discard gradients from: the front layers (the
first 20% layers), the middle layers (the middle 20% layers),
and the back layers (the last 20% layers) with varying loss
probabilities. We first trained the model without discarding
gradients and found that the test accuracy converged to 93%,
thus in our experiment we set 93% as the target accuracy.
Results in Figure 4(a) show that front-layer gradients have a
much higher bounded-loss tolerance than back-layer gradients.
For instance, to maintain the same convergence speed and
accuracy, we can only tolerate 0.3% gradient loss from the
back layers but over 5% from the front layers.

Second, larger gradients are typically more important
than smaller ones. This is because larger gradients are more
effective for SGD to identify the correlations between the

a full exploration of this as future work.

features and the task than that of smaller ones. As a result, their
losses have more negative impact on model accuracy [59].
Furthermore, larger gradients indicate bigger learning step
sizes, thus having more impact on convergence speed.

To show the impact of gradient loss of different magnitudes,
we again consider three scenarios: randomly dropping
gradients among the smallest 20%, the medium 20%, and
the largest 20% magnitudes with different loss probabilities.
Results in Fig 4(b) show that dropping larger gradients has
a much lower bounded-loss tolerance than that of dropping
smaller ones. For example, to maintain the same convergence
property, we can tolerate more than 20% loss of small
gradients but only 0.4% of the large gradients.

4 The MLT Design
MLT is inspired by the above observations. In this section, we
first introduce the key ideas of MLT (§4.1), and then present
the detailed mechanisms (§4.2). We theoretically prove the
convergence of MLT in Appendix A.

4.1 Key Ideas
1. Minimizing hotspots with order-free per-packet load
balancing. Load balancing aims to eliminate hotspots by
spreading traffic onto multiple paths. Ideally, it should be done
at packet-level. However, to avoid costly packet reordering,
current practice remains to work at the sub-optimal coarse
granularity [13, 15, 19, 113]. Based on the observation in
§3.1, packets of DNN training are order-free, which enables
packet-level spreading without reordering concerns. Thus,
MLT employs per-packet load balancing to minimize network
hotspots (§4.2.1).
2. Gradient-aware packet queueing and dropping. While
DNN training tolerates certain packet losses, the impact of
losing different gradients differs as per the observation in §3.3:
1) in terms of DNN layer, front layer gradients are less impor-
tant than back layer ones, whose dropping has less impact on
model convergence; 2) in terms of magnitude, large gradients
are more important than small ones, whose dropping has more
impact on model accuracy. To respect them, when the switch
queue is full and some packets have to be dropped, MLT en-
forces a gradient-aware selective dropping: 1) Packets carrying
front layer gradients will be selected for dropping over those
carrying back layer ones; 2) Packets carrying smaller gradients
will be selected for dropping over those carrying larger ones.

Furthermore, as mentioned in §3.3, while gradients of
front layers are less important for convergence, they are more
urgent for training pipelining, since FP can start as soon as the
front-layer tensors are received [81]. Therefore, in addition
to selective dropping, we further enforce priority queueing
to prioritize front-layer packets (§4.2.2).
3. Cutting tail latency with bounded-loss tolerance. As
shown in §2.2, gradient compression does not completely
solve the long tail latency issue. This is because network
congestion (packet losses or queueing) may be caused not

Priority queueing
& droppingPer-packet load

balancing

Bounded-loss tolerant
transmission

Leaf
switch

Spine switch

Figure 5: MLT Overview

gradientstensor_id offset

g11 g12 g1mg11 g12 … g1m

g21 g22 g2m

…

gn1 gn2 gnm

Tensors
Independent

partition of gradients

Packets
Sender Receiver

… … …

…

…

…

Figure 6: Tensor packing and unpacking
only by traffic volume, but also by traffic pattern, e.g., high
fan-in burst in a short time.

MLT exploits bounded-loss tolerance (§3.2) to address the
tail latency. Currently, reliability in transport control is “all-
or-nothing”: TCP requires all packets to be received and thus
may get blocked by a tiny fraction of packet losses waiting
for retransmission; whereas UDP has no reliability guarantee.
Neither suits for DNN training. Instead, MLT uses a bounded-
loss tolerant transport protocol that tolerates up to a bound p
fraction of packet losses without retransmission, thus effec-
tively cutting the tail latency while not degrading the training
outcome (§4.2.3).

4.2 Mechanisms
Figure 5 overviews MLT, with a 3-step workflow. First, data
traffic is spread out onto multiple paths on a per-packet basis
to minimize hotpots (Idea 1). Then, if hotspot arises, MLT
performs priority queueing, followed by selective dropping in
case of buffer overflow, based on gradient importance (Idea 2).
Finally, if packet drops which may potentially trigger timeout,
as a final defense, MLT enables bounded loss-tolerant data
transmission to avoid long retransmission delay (Idea 3).
These 3 steps work progressively to protect MLT against the
long tail latency.

4.2.1 Order-free Per-packet Load Balancing

MLT performs fast start at end-hosts, and per-packet load bal-
ancing in the network. To ensure packet independency, MLT
needs careful packet construction.

Order-free packet construction. MLT first performs tensor
packing before transmission (Figure 6). Gradients in a tensor
are divided into separated groups, which are then packed
into packets with tensor ID, layer, and offset information.
When a packet reaches the receiver, gradients in the packet
can be put into the corresponding addresses according to the
tensor ID and gradient offset. For lost gradients, we fill in the
corresponding places with zeros. For lost parameters, we use
the value of the previous iteration. This ensures that the MLT
receiver can still re-construct the tensor even with some lost
or reordered packets.

Input

Output

Priority Queueing
to speed up

training pipelining

Queue 1

Queue 2

Queue K

Queue 3

Priority levels

DNN models on
worker/server Queueing/dropping at switch

Gradients/parameters

high

low

ECN marking thresholds for
Selective Dropping

Figure 7: Priority Queueing and Selective Dropping
Per-packet load balancing. We consider two design options
for per-packet load balancing. One is to leverage the switch
side per-packet ECMP [43]. The other is to give end-hosts the
control of multi-path routing [46]. This can be done by source
routing or label switching. In our implementation of this paper,
we follow the second option as source routing delivers more
predictable performance by explicitly determining the path for
each packet. With the aid of per-packet load balancing, MLT
effectively minimizes hotspots to a great extent.
4.2.2 Gradient-aware Packet Queueing & Dropping
Congestion may still occur even if per-packet load balancing
is employed. MLT performs priority queueing and selective
dropping in case of queue buildup and buffer overflow, based
on the impact of gradients/packets on DNN training (§3.3).
End-host packet tagging. MLT first tags packets based on
the layers and magnitudes of gradients. To decide packet
priority, a straightforward solution is to map packets of each
layer to a unique priority. However, this is impractical as there
are usually much more DNN layers than switch priorities
(typically 8 [19]). To handle it, MLT evenly distributes all
layers into available priorities: it tags the packets of i-th layer
with iP

L , where L and P are total numbers of DNN layers and
available switch priority queues, respectively.

To encode the magnitude information, we adopt a similar
approach used in gradient sparsification [66]. Given all
gradients in a packet, MLT calculates the mean value and
compares it against a threshold to mark whether the packet
is important or not (indicated by ECN field in packet header
§5.2)5. By default, the threshold is set to median of all
gradients in a tensor. To minimize overhead, we sample 5%
of the gradients (inspired by [66] whose sample rate is <1%).
Switch queueing and dropping. Based on the tagging
information, MLT switches perform priority queueing and
selective dropping as shown Figure 7. For priority queueing,
it maps packets of front layers to high priority queues, which
speeds up the training pipelines. For selective dropping, it
decides whether to drop a packet from two dimensions. On
the layer level, to selectively drop front layer packets, the
corresponding higher priority queues are set with lower
dropping thresholds (more analysis in Appendix B). On

5Note that the magnitude of gradient is a better importance indicator
than that of the original parameter. If the original parameter is small yet the
gradient is large, dropping the gradient may discard update information that
builds new correlation between two features from “unrelated” to “related”.

the magnitude level, the switch drops packets based on
the importance tags; less important packets get selectively
dropped. Note that there is no need for complex deep packet
inspection, and both priority queueing and selective dropping
can be readily implemented with commodity switches by
checking DSCP and ECN fields, respectively (§5.2).

4.2.3 Bounded-loss Tolerant Data Transmission
With well-balanced traffic and deliberate queueing and
dropping mechanisms, packet loss should happen rarely or,
in case it happens, has limited impacts. However, in case of
severe losses that may lead to timeouts, as a final resort, MLT
enables a bounded-loss tolerance data transmission to avoid
long retransmission latency.
Strawman design. To realize bounded-loss tolerant data
transmission, a strawman solution is to let the receiver
application start next iteration once it receives a certain
fraction of gradients. However, this approach suffers from
head-of-line (HoL) blocking due to in-order delivery nature
of reliable transport protocols like TCP. Consider a 10-packet
message where the second packet is lost. Though the transport
layer gets 90% of data, it can only deliver the first packet up
to the application as the lost second packet blocks the delivery
of remaining packets. Consequently, application suffers from
unnecessary retransmission delay to move forward.

The reader may wonder the feasibility of unreliable
transport protocols such as UDP. While unreliable transport
protocols do not have above HoL blocking problem, their best
effort nature cannot guarantee the delivery of a certain portion
of packets. In addition, they lack congestion control to prevent
congestion collapse. Therefore, we decide to come up a new
transport protocol that can guarantee the delivery of a certain
fraction, say (1−p)%, of packets.
Semi-reliable transmission. Before training, MLT first syn-
chronizes among all the nodes with the following information:
(1) loss-tolerant bound p∈[0,1), the maximum tolerable loss
fraction for a tensor; (2) ID and size of each tensor. Note that
we can get this information before the training starts and tensor
sizes are fixed for each of the iterations. Such information is
transmitted via a reliable channel, e.g., TCP or RDMA RC
(Reliable Connection) to ensure reliability.

When the correctly delivered data reaches the bound,
MLT receiver sends a stop signal to stop the sender-side
transmission. However, it is possible that the receiver may not
obtain enough data after the sender transmitted all the packets
for a round. To this end, after transmitting all the packets of a
tensor, the sender sends a probe signal to the receiver to query
the status. The receiver responds with a bitmap of received
packets, and then the sender will re-transmit all missing
packets. Such recovery process continues until the stop signal
is received by the sender. Note that control packets such as
stop and probe are transmitted over reliable channel.
Minimal rate control. In virtue of the loss-tolerance feature,
MLT only requires a minimal rate control to avoid congestion

Kernel TCPVMA Library

Bounded-Loss Transmission

Data packet Control signal

MLT

Socket

Packet Manipulation (Tx Path)

Packet
Tagging

Send(tensor) Recv(&tensor)

ML
Framework

Middleware BytePS/Horovod/Specific Adapter

Packet Manipulation (Rx Path)

VMA Library

Data packet

Data
Partitioning Rate ControlTransmission

Control
Tensor

Construction
Packet

Untagging

MXNetPyTorchTensorFlow

Figure 8: MLT end-host implementation overview
collapse. It uses the delay as the congestion signal and adopts
a TIMELY-like [76] algorithm:
• Initially, flow starts at line rate. The sender encodes a

timestamp in the data packet while the receiver periodically
echoes back the timestamp via ACK. In our setting, the
receiver sends one ACK for every ten arrival data packets.

• Every time the sender receives an ACK, it computes the
current RTT and RTT gradient, then update the sending
rate. The rule is: 1) if the current RTT is less than Tlow or
the RTT gradient is <0, it performs additive increase and
sets the rate to rate+α; 2) if the current RTT is larger than
Thigh, it performs multiplicative decrease and sets the rate
to rate ·(1−β ·(1− Thigh

current_rtt)). In our experiment, Tlow is
12.5µs, Thigh is 125µs, α is 40Mbps and β is 0.8.

5 Implementation
We build a MLT prototype with Mellanox LibVMA [73] and
commodity switches, and integrate it into popular ML frame-
works, e.g., Tensorflow [11], PyTorch [79] and MXNet [23].

5.1 End-host Network Stack
Overview. As shown in Figure 8, MLT is implemented as
a shim layer running in user space between ML framework
and socket interfaces. We provide a series of universal com-
munication interfaces that can be integrated into various ML
frameworks [11, 23, 79] and distributed training middleware
systems (e.g., Horovod [88] and BytePS [52]).
Universal interfaces. We design and implement basic
communication primitives for common application abstrac-
tions of ML frameworks [11, 23, 52, 79]. MLT provides an
asynchronous operation and completion programming model
which is similar to those used in high performance commu-
nication libraries such as libverbs and libfabric. It provides
two basic communication APIs dlcp_post_send(tensor,
prio_func) anddlcp_post_recv(tensor, loss_bound)
and an API dlcp_poll_cq (cq) for completion notification.
The tensor abstraction is widely used by almost all popular
DNN frameworks such as TensorFlow and PyTorch.
MLT sender. At the sender side, a tensor is first partitioned
into several MTU-sized (excluding header overhead) segments
of gradients. Then we run the priority function prio_func
to determine the per-segment priority. We use the DSCP field
in the IP header to carry the priority value. The MLT header
contained in UDP payload encodes the tensor identifier, length,
offset and a sequence number.

MLT receiver. At the receiver side, dlcp_post_recv takes
the tensor received and the loss-tolerant bound as input. Before
data transmission, the sender and receiver do a rendezvous
to allocate receiving buffer in advance. Upon receiving a new
packet, the receiver copies its gradients to the pre-allocated
memory according to its offset.

Data & signal transmission. We implement MLT using both
UDP and TCP. Inspired by [40], we separate data transfers
and control signals, and only provide full reliability for
control signals (flow start/finish, retransmisison request, stop
request/confirm) whose traffic size is much smaller. To ensure
reliability, we use TCP to carry control signals. To minimize
the loss of control signals, we reserve a separate priority for
them at the switch. We find that control packets are rarely
dropped in practice. To achieve high throughput, we adopt
UDP in Mellanox LibVMA [73] (instead of Linux kernel), a
high-performance user space network stack.

Retransmission. MLT implements selective acknowledge-
ment (SACK) to manage retransmission. The buffer of a
transmitting tensor is shared by both the application and
MLT library until the corresponding completion is generated.
Thus, there is no need to maintain an additional buffer for
retransmission of unacknowledged packets.

RDMA Implementation feasibility. Today, RDMA is widely
used to accelerate distributed ML training [52,106]. The reader
may wonder how to implement MLT in RDMA NIC. However,
we did a feasibility study and noticed that today’s RDMA
NIC hardware still cannot provide enough programmability
to implement complex transport functionalities efficiently. For
example, even on the state-of-the-art NVIDIA ConnectX-7
NIC [8] which supports programmable congestion control,
users still cannot modify packet retransmission logic inside
the NIC. If we onload MLT’s complex functionalities,
e.g., semi-reliable transmission, to user space like previous
work [53], we may lose the real benefits of hardware offloading.
Therefore, we leave a full hardware implementation of MLT
as future work.

5.2 Switch Configurations
We implement priority queueing and selective dropping using
built-in functions of commodity switches.

Priority queueing (with DSCP). We enable strict priority
queueing and classify packets into the corresponding priority
queues based on the DSCP field [19, 22].

Selective dropping (with ECN). Current switching chips can-
not push out packets that are already stored in the switch buffers.
Therefore, we can only selectively drop packets at the ingress.
To this end, inspired by Aeolus [45], we use RED/ECN func-
tion [18], which is supported by commodity switches. In cur-
rent implementations, when the switch queue size exceeds the
ECN marking threshold, the switch will mark the arrival ECN-
capable packets and drop non-ECN-capable packets. Hence,
to implement selective dropping, we tag the packets carrying

large gradients with ECN-capable at the sender side. To imple-
ment layer-wise selective dropping, e.g., packets from the front
layers are easier to drop than that from the back layers, we set
smaller ECN marking thresholds for higher priority queues.

5.3 ML Framework Integration
MLT can be directly integrated with ML frameworks such
as TensorFlow [11], PyTorch [79], and MXNet [23] or indi-
rectly integrated with some distributed training middleware
systems such as Horovod [88] and BytePS [52]. Typically,
ML frameworks have their own distributed training imple-
mentations. They tend to choose a specific RPC or messaging
library and build an abstraction over it. For example, MXNet
uses PS-Lite [60] and builds a key-value store over it, while
PyTorch prefers collective communication API and can have
multiple backends such as Gloo [32], MPI [28] or NCCL [5].
These communication abstraction layers decide which nodes
are communicating with each other in one iteration and are
usually built on the top of point-to-point communication primi-
tives. To directly integrate MLT with ML frameworks, we only
need to re-implement their communication abstraction layers
using MLT’s interfaces. To indirectly integrate MLT with dis-
tributed training middleware systems, we have to replace the
point-to-point communication with MLT, and construct the
All-reduce scheme or PS topology when necessary. As BytePS
supports TensorFlow, PyTorch and MXNet, in our prototype,
we integrate MLT into BytePS [52].

6 Evaluation
We evaluate MLT with a combination of testbed experiments
and larger-scale simulations. The highlights include:
• In testbed experiments, we evaluate MLT across different

DNN models, ML frameworks and synchronization
paradigms (§6.1). Compared to the state-of-the-art work
BytePS [52] or PyTorch FSDP [115], MLT achieves up to
62.2% (PS), 10.2% (Ring) and 35.5% (FSDP, for LLMs)
training speedup without hurting the accuracy.

• In large-scale simulations, we compare MLT against various
advanced datacenter transport protocols with realistic DNN
training traffic (§6.2). MLT achieves 43.1%/91.8% lower
average/tail FCTs over DCTCP [14] and 6.7%/10.3% lower
average/tail FCTs over NDP [38] under ResNet50-induced
traffic, without modifying switch hardware.

• Deep-dive into MLT design (§6.3) shows that each of its de-
sign components contributes effectively to its performance.
We further quantify the impacts of loss-tolerant bounds and
microsecond-level RTOmin.

6.1 Testbed Experiments
6.1.1 Experimental Setup

Testbed: Our testbed (Figure 9) has 8 physical GPU servers,
each with 8 RTX3090 GPUs, 80 CPU cores (Intel Xeon
Gold 5218R), 256GB memory, 2 Mellanox ConnectX5
100Gbps NICs, and 4 Mellanox SN2100 switches running

Figure 9: Testbed Topology
Onyx 3.7.1134 OS. It forms a leaf-spine topology with one
spine switch and three leaf switches in physical. Each leaf
switch has two 100Gbps links connecting to the spine switch,
thus logically we have two spine switches. The three racks
contain 2, 3, 3 GPU servers, respectively. Each server has
two 100Gbps links connecting to the leaf switch. We further
divide one physical servers into 8 docker containers, each with
1x GPU, 10x CPU cores, 32GB memory and 25Gbps virtual
NIC6. Ultimately, we get a 64-node testbed with 2:1 to 3:1
over-subscription, a normal ratio in production [92].
Models and datasets: We use four models and two datasets
in our experiments. Our models include three image classifi-
cation tasks: VGG16 [91], ResNet50 [41] and GoogleNet [93]
training on the synthetic data with the same image size as
ImageNet [29], and one translation task: Transformer [98]
training on SQuAD [85]. We run experiments on three
ML frameworks: TensorFlow, PyTorch, MXNet with two
parameter synchronization paradigms: PS (colocated and
#servers = #workers) and Ring All-reduce.
Baselines and metrics: We mainly compare MLT with the
vanilla ML frameworks (baseline) and BytePS [52] with cross
global barrier enabled. Basically, BytePS incorporates tensor
partition and priority scheduling of ByteScheduler [81] and
has better code robustness, thus representing a state-of-the-art
in communication optimization of DNN training. For image
classification models, we use the # of images processed per
second as the speed metric, and for transformer we measure
the # of questions processed per second [85].
Parameter settings: The batch sizes of VGG16, ResNet50,
GoogleNet and Transformer are 32, 32, 32, and 10 samples
(images or questions) per GPU, referring to the settings in [81].
Switches have 4MB shared memory, and 8 queues per port.
We use DCTCP [14] as the transport protocol for baseline
and BytePS. To ensure a fair comparison between MLT and
BytePS, we open the multiple connections function [2] of
BytePS, i.e., two connections per 25Gbps, to make sure it can
saturate the bandwidth. RTOmin is 1ms and initial window
size is 20. With selective dropping, in our experiments, we
conservatively set loss-tolerant bound to 10% for MLT (see
§6.3 for deep-dive on impact of loss-tolerant bounds).
6.1.2 Results
Overall, across different DNN models, ML frameworks and
sync paradigms, MLT achieves remarkable training speedup
over state-of-the-art. Our measurement also shows that the

6We use SR-IOV to separate the physical NIC. SR-IOV can achieve
nearly the same performance as the non-virtualized environments [30].

Baseline
BytePS
MLT

1e3
Sp

ee
d

(im
ag

es
/s

ec
)

0

1

2

3

4

5

of Workers
8 16 32 64

(a) ResNet50

Baseline
BytePS
MLT

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

(b) VGG16

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

5

10

15

of Workers
8 16 32 64

(c) GoogleNet

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

of Workers
8 16 32 64

(d) Transformer
Figure 10: Speedup under different DNN models using TensorFlow under PS (all converge with the same epochs).

Baseline
BytePS
MLT

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0
1
2
3
4
5
6
7

of Workers
8 16 32 64

(a) MXNet, VGG16

Baseline
BytePS
MLT

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

(b) PyTorch, VGG16

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

(c) MXNet, Transformer

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

of Workers
8 16 32 64

(d) PyTorch, Transformer
Figure 11: Speedup under other frameworks: MXNet and PyTorch (results with ResNet50 and GoogleNet in Appendix).

Baseline
BytePS
MLT

1e2

Sp
ee

d (
im

ag
es

/se
c)

0
1
2
3
4
5
6
7
8
9

of Workers
8 16 32 64

(a) VGG16

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0
1
2
3
4
5
6

of Workers
8 16 32 64

(b) Transformer
Figure 12: Speedup under Ring All-reduce.

FSDP
MLT

1e4

Sp
ee

d
(T

ok
en

s/
se

c)

0

1

2

3

4

of GPUs
16 32 64

(a) T5-3B

FSDP
MLT

1e3

Sp
ee

d
(T

ok
en

s/
se

c)

0
1
2
3
4
5
6
7
8

of GPUs
16 32 64

(b) T5-11B
Figure 13: Speedup under Large Language Models.

additional CPU cost introduced by MLT is <1%. Note that our
results below are all based on the condition that the models
converge to the same accuracy with the same iterations.
Speedup under different DNN models: Figure 10 shows
performance of MLT over baseline and BytePS on four DNN
models using TensorFlow under PS. From the figure, we
make the following three observations. First, MLT performs
the best of all on all models. Specifically, MLT outperforms
BytePS by 14.1%–62.2% and baseline by 34.5%–141%,
across the four models. The main reason is that the default
reliable transport is sensitive to packet losses, which may
trigger timeouts and cause millisecond-level delay. During the
training, we observed around 0.15% packet losses from the
buffer counting function provided by our switch [3]. Second,
the improvement of MLT becomes more significant as the # of
workers increases. As we can see, MLT outperforms BytePS
by 9.34% to 10.7% when the # of workers is 8, and by 14.1%
to 62.2% when it increases to 64. This is expected because
as the network pressure grows higher, packet losses become
more frequent. Third, MLT achieves more speedup in VGG16
than other models. As shown in Figure 10(a), MLT achieves up
to 62.2% speedup in VGG16, more than that in other models.

The reason is that VGG16 is communication-bound and it has
the largest communication-to-computation ratio.
Speedup under different ML frameworks: Figure 11 shows
the performance of MLT over the baseline and BytePS in
PyTorch and MXNet by training VGG16 and Transformer
under PS (ResNet50 and GoogleNet in Appendix-C, Fig-
ure 22). Note that the native PyTorch Distributed Data Parallel
does not support PS, so we use the modified version [6]
as the baseline for PyTorch. We observe similar trends as
above in TensorFlow. Overall, we find that MLT outperforms
BytePS by 12.0%–53.6% and 15.3%–56.6% in MXNet
and PyTorch respectively, and they both achieve the best
speedup with VGG16 due to the same reason explained
above. This experiment shows that MLT can deliver persistent
performance improvement across different ML frameworks.
Speedup under Ring All-reduce: The above experiments all
use PS, which is widely used in both academia and industry [50,
52, 60, 81], especially for the large and sparse models [61].
Here, we further evaluate the performance of MLT under Ring
All-reduce. Please note that BytePS [52] by default does not
support the Ring All-reduce communication, we adapt it to
support Ring. Figure 12 shows the results of VGG16 and Trans-
former (ResNet50 and GoogleNet in Appendix-C, Figure 23).
In all cases, we see clear performance improvement with MLT,
though not significant. Compared to BytePS, MLT achieves
6.89%–10.2% improvement; in comparison, BytePS achieves
5.97%–8.21% improvement over the baseline. As expected,
we observe less speedup in Ring All-reduce than that in PS, and
the key reason is that: packet loss is rare in Ring All-reduce,
thus it is immune from long tail latency caused by timeout. Nev-
ertheless, MLT still delivers better performance over BytePS
due to the fine-grained per-packet load balancing and reduction
of data volume in transmission with bounded loss tolerance.
Speedup under Large Language Models (LLMs): Recently,
LLMs like ChatGPT [10] have gained popularity and received
considerable attention from the community. To support
training or fine-tuning of LLMs, a popular approach is to
divide the parameters, gradients, and optimizer states equally

into each GPU’s memory during the data parallelism. Before
computing a layer of a model, an all-reduce communication
is performed to ensure each GPU possesses a full copy of the
current layer. This approach reduces GPU memory footprint
through frequent communication. Notable implementations
of this approach include Zero Redundancy Optimizer
(ZeRO) [84] and Fully Sharded Data Parallel (FSDP) [115].

To evaluate MLT under LLMs, we replace the inter-server
communication module of the PyTorch FSDP [115] (using
NCCL [5]) with MLT. For the communication of optimizer
states that are used for gradient calculation, i.e., gradient
momentums and historical gradient values, we treat them the
same as gradients. Considering that each GPU does not store
the full copy of parameters, we cannot use the past parameters
to replace the missing new parameters. To handle this issue, we
mark all parameter packets as important packets. This does not
significantly alter the proportion of important packets, as the
optimizer states dominate the traffic volume in FSDP [84,115].
Given the limitation of compute power of our testbed, we chose
the HuggingFace T5 model [83], a popular transformer-based
open-source LLM, 3/11-billion versions and fine-tune them
on the WikiHow dataset [55] for the text summarization task.

Figure 13 shows the results. In our experiment, we find
that for the T5-11B model, 8 RTX3090s are insufficient
to accommodate it, so we show the results with 16, 32 and
64 GPUs respectively. Compared to the PyTorch FSDP,
MLT achieves an improvement of 22.1%-35.5% for T5-3B
and 18.5%-31.2% for T5-11B. We observe more speedup
compared to Figure 12 with the same Ring All-reduce setting,
this is because FSDP involves more frequent communication
and a larger volume of data transfer for LLMs. Moreover, we
monitor the model loss changes during the fine-tuning process
and find that MLT does not affect the model convergence.

6.2 Large-scale Simulations
6.2.1 Simulation Setup
Topology and traffic: As [15, 19], we choose a leaf-spine
topology with 4 core, 9 ToR switches and 144 hosts. Each ToR
switch is connected to 16 hosts using 100Gbps links and 4 core
switches using 4×100Gbps links. The base RTT between two
servers (4 hops) is 24µs. Each switch port has 512KB buffer.
For network traffic, we use the realistic workloads derived
from training ResNet50 and GoogleNet under PS. We evenly
distribute workers and parameter servers across all the racks,
with the ratio of 3:1. We also obtain the computation time and
tensor sizes from our testbed.
Schemes compared: We use DCTCP [14] as the baseline,
as it is widely used in production. We also compare MLT
with PIAS [19], pFabric [15], NDP [38] (simulated on htsim).
TCP initial window is 10, and ECN marking threshold is 65
packets [14]. RTOmin is set to 10ms by default [20, 97] (We
also ran simulations with 5ms and 1ms RTOmin, and observed
similar trends). DupACKs is 3 for DCTCP and PIAS, and
DelayAck is disabled. DCTCP and PIAS use per-flow ECMP

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

1

2

3

4

of Workers
36 72 108 144

(a) ResNet50, Average FCT

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

0
200

400
600

of Workers
36 72 108 144

(b) ResNet50, Tail FCT

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

1

2

3

4

of Workers
36 72 108 144

(c) GoogleNet, Average FCT

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

0
200

400
600

of Workers
36 72 108 144

(d) GoogleNet, Tail FCT
Figure 14: Large-scale simulations (network metrics).

while pFabric uses per-packet ECMP.
6.2.2 Results
Figure 14 shows the average and tail FCTs of MLT versus
other schemes for ResNet50 and GoogleNet induced traffic at
varying network scales. In general, MLT delivers the best per-
formance. For ResNet50, MLT achieves up to 43.1%, 44.8%,
35.5%, 6.7% lower average FCT and 91.8%, 91.8%, 88.6%,
10.3% lower tail FCT compared to DCTCP, PIAS, pFabric and
NDP, respectively. For GoogleNet, MLT delivers up to 35.1%,
38.0%, 43.5%, 7.7% lower average FCT and 91.7%, 91.9%,
91.7%, 8.7% lower tail FCT over these schemes, respectively.
From the above results, we make the following observations:

• MLT preforms the best in all settings. MLT achieves the
best performance in all workloads and network scales. The
main reason is that all the other algorithms suffer from
packet loss and retransmission to ensure reliability, while
MLT tolerates certain packet loss.

• MLT significantly reduces the tail FCT. Relative to average
FCT, MLT reduces the tail more significantly. The reason
is that retransmission timeout greatly increases the tail of
other algorithms, while MLT tolerates packet loss and is
free of retransmission timeout. We also note that NDP can
achieve similar performance as MLT. However, it requires
special switch hardware and is not readily deployable.

• The speedup of MLT is more notable as the network scale
increases. In general, MLT reduces FCT more significantly
at larger scale. The reason is that, as the scale increases, prior
solutions experience more packet loss, thus performance
degradation, whereas MLT is immune to overhead by
packet loss with the bounded-loss tolerance.

6.3 Deep Dive
MLT under gray failure of links [testbed]: Fault-tolerance
and reliability are crucial for distributed training, especially for
large models. We find that the loss tolerance feature of MLT can
be a good solution in the gray failure of network links, i.e., hard-
to-detect but persistent link random packet loss, which may
be caused by subtle hardware malfunctions, firmware bugs,
or environmental interference [48]. A measurement work in
Microsoft categorizes a network problem when the loss rate
is larger the 0.1% [37]. Here we evaluate the performance of

Baseline
BytePS
MLT

1e2
Sp

ee
d

(im
ag

es
/s

ec
)

0
1
2
3
4
5
6
7
8
9

Loss Rate (%)
0 0.01 0.1 1

(a) VGG16

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0
1
2
3
4
5
6

Loss Rate (%)
0 0.01 0.1 1

(b) Transformer
Figure 15: Speedup under gray failure of links.

MLT under gray failure on our 64 GPUs testbed. We assume
that a worker-to-switch link has a gray failure, and emulate
packet loss by adding random packet dropping to the mapped
NICs by using the tc qdisc tool in linux. The loss rate is set to
0, 0.01%, 0.1% and 1% in the experiment and we use PyTorch
as the framework. Figure 15 shows the results of VGG16 and
Transformer. Figure 21 shows ResNet50 and GoogleNet in
Appendix-C. We can see that the baseline and BytePS start
to suffer from noticeable performance degradation (12.2%-
31.5% and 15%-28.3%) when the loss rate is 0.1% and the
degradation is significant (25.7%-61.7% and 31.2%-61.3%)
when the loss rate is 1%. As a comparison, MLT maintains its
performance in all the loss scenarios.
Design component effectiveness [testbed]: MLT consists of
three main components: A) bounded-loss tolerant data trans-
mission, B) gradient-aware queueing and dropping, and C)
order-free per-packet load balancing. We now look into the ef-
fectiveness of each component. To do so, we set BytePS [52] as
the baseline, and start MLT with component A and then gradu-
ally add B and C one by one (setting I). Then, we start with com-
ponent C (using UDP with the minimal rate control of MLT)
and gradually add B and A (setting II). We measure the speeds
of training ResNet50, Transformer, VGG16 and GoogleNet
under PyTorch with 64 GPUs, and we repeat the experiment
10 times and compute the mean and standard error. Corre-
spondingly, we also record the convergence curves (epoch-to-
accuracy, ETA). The results of VGG16 and Transformer are
shown in Figure 16 for setting I and Figure 17 for setting setting
II (ResNet50 and GoogleNet in Appendix-C, Figure 24 and
Figure 25). For CNN models, we use top-1 accuracy; for Trans-
former, we use exact match (EM) as the test accuracy metric.

From the results, we see that each component contributes
effectively to the overall performance. Specifically, in setting
I, compared to BytePS, MLT with component A only can
improve the training speed (left figures). While it requires a bit
more rounds to converge to the same accuracy (right figures,
due to the packet loss as we set the loss bound as 10%), we
find that the end-to-end training time still improves (decided
by both unit speed and # of epochs). Then, with component
B added, the ETA of MLT is significantly improved (almost
as good as BytePS) as the training speed increases. The main
reason is due to selective dropping which preserves important
gradients from being dropped. Finally, after incorporating
component C, MLT maintains its good ETA while improving
remarkably in training speed. This is because of the better
network utilization brought by perfect load balancing.

In setting II, spreading gradients out at packet granularity (C)

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

Component
BytePS A A+B A+B+C

(a) VGG16, Speed

BytePS
A
A+B
A+B+CTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch50 100

(b) VGG16, ETA
1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

4

5

Component
BytePS A A+B A+B+C

(c) Transformer, Speed

BytePS
A
A+B
A+B+CTe

st
 A

cc
ur

ac
y

(%
)

0

20

40

60

Epoch5 10

(d) Transformer, ETA
Figure 16: Effectiveness of design components (I).
1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

Component
BytePS C C+B C+B+A

(a) VGG16, Speed

BytePS
C
C+B
C+B+ATe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch50 100

(b) VGG16, ETA
1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

4

5

Component
BytePS C C+B C+B+A

(c) Transformer, Speed

BytePS
C
C+B
C+B+ATe

st
 A

cc
ur

ac
y

(%
)

0

20

40

60

Epoch5 10 15

(d) Transformer, ETA
Figure 17: Effectiveness of design components (II).

can effectively improve the training speed, but requiring more
epochs to converge and may reduce the accuracy. After adding
gradient-aware packet queueing and dropping (B), the speed is
sightly increased and convergence is significantly improved,
only needs a few more epochs than the baseline. The reason
is that priority queueing can speed up the communication-
computation pipeline and selective dropping can protect more
important gradients. Finally, with the bounded-loss tolerance
transmission (A), it can further speedup the training and achiev-
ing the same convergence speed and accuracy as the baseline.

Impact of loss-tolerant bounds [testbed]: We inspect the con-
vergence behaviors of MLT with different loss-tolerant bounds
by training VGG16 and Transformer in Figure 18 (ResNet50
and GoogleNet in Appendix-C, Figure 26). We set the bound
as 1%, 10%, 20% and 30%, respectively. Figure 18(a)(c) show
curves of ETA. We can see that with 1% and 10% loss-tolerant
bounds, the curves are all almost in line with BytePS; with
20% and 30% loss-tolerant bounds, it requires more epochs
to converge to the same accuracy. We also measured the
bounds of other widely-used models with MLT in Table 5 of
Appendix-C. The results indicate that, with the optimization
of gradient-aware dropping, MLT can tolerate more packet
loss than pure random loss shown in Table 1. This motivates us
to set the loss-tolerant bound as 10% in our testbed experiment
(§6.1). Figure 18(b)(d) show results of time-to-accuracy
(TTA). Compared to BytePS, MLT converges faster under all

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch0 50 100

(a) VGG16, ETA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Time (s)
0 20000 40000

(b) VGG16, TTA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

20

40

60

Epoch
0 5 10 15

(c) Transformer, ETA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

20

40

60

Time (s)
2000 4000 6000 8000 10000

(d) Transformer, TTA
Figure 18: Impact of loss-tolerant bounds.

loss-tolerant bounds, except for MLT-30% under Transformer.
Meanwhile, we find that 1% and 10% loss-tolerant bounds
take almost the same time to converge. This implies that we
might not need to struggle with fine-tuning the loss-tolerant
bound in order to achieve satisfactory performance. However,
the relationship between the model architecture and its
loss-tolerant bounds remains an open question for future study.
Impact of microsecond RTOmin [simulation]: As a com-
plement to testbed, we measure the tail FCT when RTOmin is
<1ms using simulation. Specifically, we choose three RTOmins:
25µs which is close to our 24µs base RTT, and two intermediate
values: 100µs and 500µs. We conduct the simulations with
GoogleNet-induced traffic under different compression ratios,
and show the results in Figure 19. From the figure, we make
two observations. First, while the RTOmin is sub-ms level, the
tail FCT is still around 10ms or above (MLT can reduce it to
4.12ms). This is due to the same reason as explained in §2.2—
tail FCT is mainly decided by large actual RTO amplified by
consecutive packet losses and spurious retransmissions. For
example, we observe 4.2KB spurious retransmission from the
tail flow (the size is 127.4KB) and 0.97% packet loss under
25µs RTOmin and 32× compression. MLT can reduce the
tail to 4.12ms. Second, the curves turn to flat after a certain
compression ratio, which implies that further compressing the
gradient volume does not help to reduce the tail FCT. This is
also in line with our observation in §2.2. As a final remark,
while we showcase the µs-level RTOmin here, we remind
readers that in production RTOmin is typically set at ms-level.

7 Open Questions and Discussion
MLT is, by no means, a full stop to ML-specific transport. We
have left a series of open questions from theoretical aspects of
ML characteristics to practical implementation/deployment
throughout the paper. Here, we discuss a few more. Due to
the space limit, we move the discussion of "co-existing with
non-DNN traffic", "flexible selective dropping" and "MLT vs
SRD" to the Appendix-D.
MLT for other parallelism schemes. While MLT is mainly
designed for data parallelism, its core ideas may provide
insights for designing network transport for other schemes,
i.e., model/pipeline/tensor parallelism [51]. Some MLT
mechanisms can be directly used. For example, the order-free

MLT
MLT-25µs
MLT-100µs
MLT-500µs
MLT-1ms

FC
T/

m
s

1

10 1

10 2

Compression Ratio
1× 2× 4× 8× 16× 32×

Figure 19: Tail FCTs with microsecond-level RTOmin.
pre-packet load balancing remains effective for activations
and propagated gradients in model parallelism. Others may
need to be modified to adapt to the nature of model parallelism.
For example, packets in transmission for model parallelism
are primarily used for FP/BP computations, which makes their
priorities/loss-tolerance properties different from the model
synchronization/update phases in data parallelism. We leave
the theoretical analysis of this for future study.

Multi-tenant cloud environment. In multi-tenant cloud
environments, e.g., EC2 and Azure, we will not be able to
manipulate the underlying network protocols and switches.
For example, the traffic may be encapsulated inside a tunnel
(like VXLAN) and switches cannot access those fields to
perform priority queueing or dropping. Furthermore, the cloud
providers typically do not allow tenants to access the queues
of the underlying network for security reasons. Thus, we
acknowledge that MLT does not work for such scenarios.

8 Related Work
Besides the closely related works discussed in §2.2, there
exist some other solutions to improve the communication of
DNN training. For example, RDMA [17, 67] and NCCL [5]
provide higher bandwidth to speedup tensor transmission.
BlueConnect [27] and PLink [70] design novel communica-
tion patterns with network topology awareness for gradient
synchronization at each iteration for better performance
and robustness. GPipe [49] and PipeDream [78] overlap
communication with computation in model parallelism. More
recently, SwitchML [87] and ATP [58] leverages in-network
aggregation to reduce the communication overhead in the
network. Note that these works are orthogonal to MLT.

9 Conclusion
This paper presented MLT, a domain-specific network
transport exploiting the special properties of machine learning
to optimize distributed DNN training. MLT consists of
three key ideas: 1) order-free per-packet load balancing,
2) gradient-aware packet queueing and dropping, and 3)
bounded-loss tolerant data transmission. Extensive testbed
experiments and simulations have shown the promise of MLT.

Acknowledgement
We thank the anonymous NSDI reviewers and our shepherd
Costin Raiciu for their feedback and suggestions. This work
is supported in part by Hong Kong RGC TRS T41-603/20R,
GRF 16213621, ITF ACCESS, NSFC 62062005, Key-Area
Research and Development Program of Guangdong Province
(2021B0101400001), and the Turing AI Computing Cloud
(TACC) [105]. Kai Chen is the corresponding author.

References
[1] Ieee. 802.11qbb. priority based flow control

https://1.ieee802.org/dcb/802-1qbb/, 2011.

[2] Byteps best practice: https://github.com/byted
ance/byteps/blob/master/docs/best-practic
e.md?plain=1#L26, 2020.

[3] Mellonax switch: https://www.mellanox.com/p
roducts/ethernet-switches, 2020.

[4] Mlperf training results resnet50: https:
//mlperf.org/training-results-0-6, 2020.

[5] Nvidia collective communications library: https://
www.nvidia.com/en-us/data-center/nvlink/,
2020.

[6] Pytorch distributed data parallel supporting ps:
https://github.com/bytedance/byteps/blob/m
aster/docs/DistributedDataParallel.md, 2020.

[7] Imagenet-100: https://www.kaggle.com/datas
ets/ambityga/imagenet100, 2022.

[8] Connectx-7: https://nvdam.widen.net/s/csf8r
mnqwl/infiniband-ethernet-datasheet-conne
ctx-7-ds-nv-us-2544471, 2023.

[9] Nvidia h100 tensor core gpu: https://www.nvidia
.com/en-us/data-center/h100/, 2023.

[10] Openai chatgpt: https://chat.openai.com, 2023.

[11] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In OSDI, 2016.

[12] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. In NIPS,
2017.

[13] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Vinh The Lam, Francis Matus, Rong Pan,
Navindra Yadav, et al. Conga: Distributed congestion-
aware load balancing for datacenters. In Proceedings
of the 2014 ACM Conference on SIGCOMM, pages
503–514, 2014.

[14] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tcp (dctcp). In SIGCOMM, 2010.

[15] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar,
and Scott Shenker. pfabric: Minimal near-optimal
datacenter transport. In SIGCOMM. ACM, 2013.

[16] Arnold O Allen. Probability, statistics, and queueing
theory. Academic press, 2014.

[17] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kris-
han Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri
Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
et al. Empowering azure storage with rdma. In 20th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 49–67, 2023.

[18] Wei Bai, Kai Chen, Li Chen, Changhoon Kim, and
Haitao Wu. Enabling ecn over generic packet
scheduling. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments
and Technologies, pages 191–204. ACM, 2016.

[19] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In 12th {USENIX}
Symposium on Networked Systems Design and
Implementation ({NSDI} 15), pages 455–468, 2015.

[20] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and
Yongqiang Xiong. One more config is enough: Saving
(dc) tcp for high-speed extremely shallow-buffered
datacenters. In IEEE INFOCOM 2020-IEEE Confer-
ence on Computer Communications, pages 2007–2016.
IEEE, 2020.

[21] Léon Bottou. Large-scale machine learning with
stochastic gradient descent. In COMPSTAT’2010.
Springer, 2010.

[22] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh.
Scheduling mix-flows in commodity datacenters with
karuna. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 174–187, 2016.

[23] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274, 2015.

[24] Yanpei Chen, Rean Griffith, Junda Liu, Randy H
Katz, and Anthony D Joseph. Understanding tcp
incast throughput collapse in datacenter networks. In
Proceedings of the 1st ACM workshop on Research on
enterprise networking, pages 73–82, 2009.

[25] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang
Lin. Catch the whole lot in an action: Rapid precise
packet loss notification in data center. In 11th

https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/dcb/802-1qbb/
https://github.com/bytedance/byteps/blob/master/docs/best-practice.md?plain=1#L26
https://github.com/bytedance/byteps/blob/master/docs/best-practice.md?plain=1#L26
https://github.com/bytedance/byteps/blob/master/docs/best-practice.md?plain=1#L26
https://www.mellanox.com/products/ethernet-switches
https://www.mellanox.com/products/ethernet-switches
https://mlperf.org/training-results-0-6
https://mlperf.org/training-results-0-6
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://github.com/bytedance/byteps/blob/master/docs/DistributedDataParallel.md
https://github.com/bytedance/byteps/blob/master/docs/DistributedDataParallel.md
https://github.com/bytedance/byteps/blob/master/docs/DistributedDataParallel.md
https://www.kaggle.com/datasets/ambityga/imagenet100
https://www.kaggle.com/datasets/ambityga/imagenet100
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://chat.openai.com

{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14), pages 17–28, 2014.

[26] Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder–decoder for statis-
tical machine translation. Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014.

[27] Minsik Cho, Ulrich Finkler, and David Kung. Blue-
connect: Novel hierarchical all-reduce on multi-tired
network for deep learning. In Proceedings of the Confer-
ence on Systems and Machine Learning (SysML), 2019.

[28] Lyndon Clarke, Ian Glendinning, and Rolf Hempel.
The mpi message passing interface standard. In
Programming environments for massively parallel
distributed systems, pages 213–218. Springer, 1994.

[29] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[30] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng
Liao, Kun Tian, and Haibing Guan. High performance
network virtualization with sr-iov. Journal of Parallel
and Distributed Computing, 72(11):1471–1480, 2012.

[31] Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom
Benson, Andy Yoo, Marc Snir, and Brian Van Essen.
Aluminum: An asynchronous, gpu-aware communi-
cation library optimized for large-scale training of deep
neural networks on hpc systems. Technical report,
Lawrence Livermore National Lab.(LLNL), Livermore,
CA (United States), 2018.

[32] Facebook. Gloo: Collective communications library
with various primitives for multi-machine training.,
2020.

[33] Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco
Canini, and Amedeo Sapio. Efficient sparse collective
communication and its application to accelerate
distributed deep learning. In SIGCOMM, 2021.

[34] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning
generative visual models from few training examples:
An incremental bayesian approach tested on 101 object
categories. Computer Vision and Pattern Recognition
Workshop, 2004.

[35] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter
Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate,

large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[36] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
Rdma over commodity ethernet at scale. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, pages
202–215. ACM, 2016.

[37] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin
Wang, Bin Pang, Hua Chen, et al. Pingmesh: A
large-scale system for data center network latency
measurement and analysis. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, pages 139–152, 2015.

[38] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 29–42, 2017.

[39] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and
Roy H Campbell. Tictac: Accelerating distributed
deep learning with communication scheduling. arXiv
preprint arXiv:1803.03288, 2018.

[40] E. He, J. Leigh, O. Yu, and T. A. Defanti. Reliable blast
udp : predictable high performance bulk data transfer.
In Proceedings. IEEE International Conference on
Cluster Computing, pages 317–324, 2002.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[43] Christian Hopps et al. Analysis of an equal-cost
multi-path algorithm. Technical report, RFC 2992,
November, 2000.

[44] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar,
Dimitris Konomis, Gregory R Ganger, Phillip B Gib-
bons, and Onur Mutlu. Gaia: Geo-distributed machine
learning approaching lan speeds. In NSDI, 2017.

[45] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang.
Aeolus: A building block for proactive transport in
datacenters. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures,

and protocols for computer communication, pages
422–434, 2020.

[46] Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang
Lan, Hao Wang, Hongze Zhao, and Chuanxiong Guo.
Explicit path control in commodity data centers: Design
and applications. In 12th {USENIX} Symposium
on Networked Systems Design and Implementation
({NSDI} 15), pages 15–28, 2015.

[47] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
4700–4708, 2017.

[48] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R
Lorch, Yingnong Dang, Murali Chintalapati, and
Randolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems, pages 150–155, 2017.

[49] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient
training of giant neural networks using pipeline
parallelism. In Advances in Neural Information
Processing Systems, pages 103–112, 2019.

[50] Anand Jayarajan, Jinliang Wei, Garth A. Gibson,
Alexandra Fedorova, and Gennady Pekhimenko.
Priority-based parameter propagation for distributed
dnn training. In Proceedings of Systems and Machine
Learning (SysML), 2019.

[51] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
Proceedings of Machine Learning and Systems, 1:1–13,
2019.

[52] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed {DNN} training in heteroge-
neous gpu/cpu clusters. In 14th {USENIX} Symposium
on Operating Systems Design and Implementation
({OSDI} 20), pages 463–479, 2020.

[53] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In 16th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19), pages 1–16, 2019.

[54] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[55] Mahnaz Koupaee and William Yang Wang. Wikihow:
A large scale text summarization dataset. arXiv preprint
arXiv:1810.09305, 2018.

[56] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
The cifar-10 dataset, 2014.

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012.

[58] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael M Swift.
Atp: In-network aggregation for multi-tenant learning.
In NSDI, pages 741–761, 2021.

[59] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436, 2015.

[60] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long,
Eugene J Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In OSDI,
2014.

[61] Mu Li, David G Andersen, Alexander J Smola, and
Kai Yu. Communication efficient distributed machine
learning with the parameter server. Advances in Neural
Information Processing Systems, 27:19–27, 2014.

[62] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J
Smola. Efficient mini-batch training for stochastic
optimization. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 661–670, 2014.

[63] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang,
A. Schwing, H. Esmaeilzadeh, and N. S. Kim. A
network-centric hardware/algorithm co-design to accel-
erate distributed training of deep neural networks. In
2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 175–188, 2018.

[64] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu.
Asynchronous parallel stochastic gradient for noncon-
vex optimization. In Advances in Neural Information
Processing Systems, pages 2737–2745, 2015.

[65] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh,
Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent. In
Advances in Neural Information Processing Systems,
pages 5330–5340, 2017.

[66] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training.
arXiv preprint arXiv:1712.01887, 2017.

[67] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda.
High performance rdma-based mpi implementation
over infiniband. International Journal of Parallel
Programming, 32(3):167–198, 2004.

[68] Yuanwei Lu,Guo Chen,Larry Luo,Kun Tan,Yongqiang
Xiong, Xiaoliang Wang, and Enhong Chen. One more
queue is enough: Minimizing flow completion time
with explicit priority notification. In IEEE INFOCOM
2017-IEEE Conference on Computer Communications,
pages 1–9. IEEE, 2017.

[69] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phan-
ishayee, and Arvind Krishnamurthy. Parameter hub:
a rack-scale parameter server for distributed deep
neural network training. In Proceedings of the ACM
Symposium on Cloud Computing, pages 41–54, 2018.

[70] Liang Luo, Peter West, Jacob Nelson, Arvind Krish-
namurthy, and Luis Ceze. Plink: Efficient cloud-based
training with topology-aware dynamic hierarchical
aggregation. In Proceedings of the 3rd MLSys
Conference, 2020.

[71] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and
Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of
the European conference on computer vision (ECCV),
pages 116–131, 2018.

[72] Dominic Masters and Carlo Luschi. Revisiting small
batch training for deep neural networks. arXiv preprint
arXiv:1804.07612, 2018.

[73] Mellanox. Messaging accelerator (vma), 2019.

[74] Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. Regularizing and optimizing lstm language
models. arXiv preprint arXiv:1708.02182, 2017.

[75] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

[76] Radhika Mittal, Nandita Dukkipati, Emily Blem, Has-
san Wassel, Monia Ghobadi, Amin Vahdat, Yaogong
Wang, David Wetherall, David Zats, et al. Timely:
Rtt-based congestion control for the datacenter. In
SIGCOMM’15. ACM, 2015.

[77] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven
low-latency transport protocol using network priorities.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages
221–235, 2018.

[78] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream:
generalized pipeline parallelism for dnn training. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[79] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

[80] Pitch Patarasuk and Xin Yuan. Bandwidth optimal
all-reduce algorithms for clusters of workstations.
Journal of Parallel and Distributed Computing,
69(2):117–124, 2009.

[81] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
16–29. ACM, 2019.

[82] Ning Qian. On the momentum term in gradient descent
learning algorithms. Neural networks, 1999.

[83] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of
transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

[84] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–16. IEEE, 2020.

[85] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, 2016.

[86] Benjamin Recht, Christopher Re, Stephen Wright,
and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In NIPS, 2011.

[87] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind
Krishnamurthy, Masoud Moshref, Dan RK Ports,
and Peter Richtárik. Scaling distributed machine
learning with in-network aggregation. arXiv preprint
arXiv:1903.06701, 2019.

[88] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[89] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A cloud-optimized transport protocol for elastic
and scalable hpc. IEEE Micro, 40(6):67–73, 2020.

[90] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv
preprint arXiv:1909.08053, 2019.

[91] Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[92] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized con-
trol in google’s datacenter network. ACM SIGCOMM
computer communication review, 45(4):183–197, 2015.

[93] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

[94] Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
International Conference on Machine Learning, pages
6105–6114. PMLR, 2019.

[95] Leslie G Valiant. A bridging model for parallel com-
putation. Communications of the ACM, 33(8):103–111,
1990.

[96] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin
Taheri, and Tom Edsall. Let it flow: Resilient asym-
metric load balancing with flowlet switching. In 14th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 17), pages 407–420,
2017.

[97] Vijay Vasudevan, Amar Phanishayee, Hiral Shah,
Elie Krevat, David G Andersen, Gregory R Ganger,
Garth A Gibson, and Brian Mueller. Safe and effective
fine-grained tcp retransmissions for datacenter commu-
nication. ACM SIGCOMM computer communication
review, 39(4):303–314, 2009.

[98] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In

Advances in neural information processing systems,
pages 5998–6008, 2017.

[99] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey
Donahue, Raymond Mooney, Trevor Darrell, and
Kate Saenko. Sequence to sequence-video to text. In
Proceedings of the IEEE international conference on
computer vision, pages 4534–4542, 2015.

[100] Xinchen Wan, Hong Zhang, Hao Wang, Shuihai
Hu, Junxue Zhang, and Kai Chen. Rat - resilient
allreduce tree for distributed machine learning. In
4th Asia-Pacific Workshop on Networking, APNet ’20,
page 52–57, New York, NY, USA, 2020. Association
for Computing Machinery.

[101] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang.
Gradient sparsification for communication-efficient
distributed optimization. In NIPS, 2018.

[102] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[103] Wencong Xiao, Romil Bhardwaj, Ramachandran
Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhenhua
Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, et al. Gandiva: Introspective cluster scheduling
for deep learning. In 13th {USENIX} Symposium
on Operating Systems Design and Implementation
({OSDI} 18), pages 595–610, 2018.

[104] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim,
Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao Xie,
Abhimanu Kumar, and Yaoliang Yu. Petuum: A new
platform for distributed machine learning on big data.
IEEE Transactions on Big Data, 2015.

[105] Kaiqiang Xu, Xinchen Wan, Hao Wang, Zhenghang
Ren, Xudong Liao, Decang Sun, Chaoliang Zeng,
and Kai Chen. Tacc: A full-stack cloud computing
infrastructure for machine learning tasks. arXiv
preprint arXiv:2110.01556, 2021.

[106] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu,
Lintao Zhang, and Lidong Zhou. Fast distributed deep
learning over rdma. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–14, 2019.

[107] Jason Yosinski, Jeff Clune, Yoshua Bengio, and
Hod Lipson. How transferable are features in deep
neural networks? In Advances in neural information
processing systems, pages 3320–3328, 2014.

[108] Chen Yu, Hanlin Tang, Cedric Renggli, Simon Kassing,
Ankit Singla, Dan Alistarh, Ce Zhang, and Ji Liu.
Distributed learning over unreliable networks. In
International Conference on Machine Learning, pages
7202–7212. PMLR, 2019.

[109] Sergey Zagoruyko and Nikos Komodakis. Wide resid-
ual networks. arXiv preprint arXiv:1605.07146, 2016.

[110] David Zats, Tathagata Das, Prashanth Mohan, Dhruba
Borthakur, and Randy Katz. Detail: reducing the
flow completion time tail in datacenter networks. In
SIGCOMM. ACM, 2012.

[111] Chiyuan Zhang, Samy Bengio, and Yoram Singer.
Are all layers created equal? arXiv preprint
arXiv:1902.01996, 2019.

[112] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai,
Qirong Ho, Xiaodan Liang, Zhiting Hu, Jinliang
Wei, Pengtao Xie, and Eric P Xing. Poseidon: An
efficient communication architecture for distributed
deep learning on {GPU} clusters. In 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17),
pages 181–193, 2017.

[113] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and
Mosharaf Chowdhury. Resilient datacenter load
balancing in the wild. In SIGCOMM. ACM, 2017.

[114] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang,
Raman Arora, and Xin Jin. Is network the bottleneck
of distributed training? In Proceedings of the Workshop
on Network Meets AI & ML, pages 8–13, 2020.

[115] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo,
Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch
fsdp: experiences on scaling fully sharded data parallel.
arXiv preprint arXiv:2304.11277, 2023.

[116] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra
Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion control for large-scale rdma
deployments. In SIGCOMM. ACM, 2015.

Appendix

A Convergence Analysis of MLT
This section formally presents a convergence analysis for
MLT, essentially a distributed machine learning process
with priority/selective dropping on gradients. Note that prior
work [108] has already proven the comparable convergence
rate of distributed learning with random dropping (i.e.,

unreliable network with independent and equivalent packet
drop probability p for each message). Here, on top of [108], we
further extend the convergence proof from random dropping
to priority/selective dropping. The notations used here are
shown in Table 3.

‖·‖ l2 norm for vectors
‖·‖F the Frobenius norm of matrices
n number of workers
m number of servers
γ model learning rate
p packet dropping ratio

Table 3: Definitions and notations

The distributed optimization problem is defined as:

min
~x

f (~x)=
1
n

n

∑
i=1

fi(~x), (1)

where n is the number of workers, fi(~x) = Eξ DiFi(~x, ξ)
represents the expected loss function F over Di, the local
data distribution of worker i. At each iteration, every worker
performs SGD on a random chosen subset of dataset D(i)

t :

G(i)
t =∇Fi

(
X (i)

t ,D(i)
t

)
.

X (i)
t , G(i)

t and D(i)
t denotes the model weights, generated gra-

dients and training data of worker i at iteration t respectively.
Before sending the gradients, every worker i divides the

gradients into m equal blocks:

G(i)
t =

(
(G(i,1)

t)ᵀ,(G(i,2)
t)ᵀ,...,(G(i,m)

t)ᵀ
)
.

When sending gradients G(i)
t , some blocks may be dropped

because of the networking condition and priority dropping.
For each blocks, the gradients on every workers are collected
and averaged by parameter server:

G̃ j
t =

1

|N(j)
t |

∑
i∈N(j)

t

G(i, j)
t ,

where G̃ j
t denotes the averaged gradients of block j at iteration

t, and N(j)
t denotes the number of workers whose blocks j are

successfully averaged at iteration t.
After averaging gradients, the parameter server updates the

corresponding weight block using SGD algorithm and returns
them back to each workers for their local updates. For workers
that fail to receive the averaged block, they just use the original
gradients. Formally, the updated gradients on worker i is:

X (i)
t+1=

(
(X (i,1)

t+1)ᵀ,(X (i,2)
t+1)ᵀ,...,(X (i,m)

t+1)ᵀ
)
,

where

X (i, j)
t+1 =

{
X (i, j)

t −γG̃ j
t , i∈ Ñ(j)

t

X (i, j)
t −γG(i, j)

t , i /∈ Ñ(j)
t .

Ñ(j)
t denotes the set of workers to which the averaged block

j is successfully sent at iteration t.
For the algorithm, we make the following assumptions

commonly used for analyzing stochastic optimization
algorithms [64, 108].

Assumption 1. We make the following commonly used
assumptions:
1. Lipschitzian gradient: The gradient function ∇ fi(·) is

L-Lipschitian, which means

‖∇ fi(~x)−∇ fi(~y)‖≤L‖~x−~y‖

2. Bounded gradient: The variance of stochastic gradient is
bounded for every worker i and any~x.

Eξ Di‖∇Fi(~x;ξ)−∇ fi(~x)‖2≤σ
2,∀i,∀~x

1
n

n

∑
i=1
‖∇ fi(~x)−∇ f (~x)‖2≤ξ

2,∀i,∀~x,

3. Start from 0: For simplicity, we assume X1=0 w.l.o.g.

With arbitrary packet dropping policy, the updated gradients
on each worker can always be represented as the linear
combination of local gradients.

X (i, j)
t+1 −X (i, j)

t =G(·, j)
t W (j)

t ,

where

G(·, j)
t :=

(
(G(1, j)

t)ᵀ,(G(2, j)
t)ᵀ,...,(G(i, j)

t)ᵀ
)
.

W (j)
t is the coefficient matrix. And

[
W (j)

t

]
m,k

denotes the

coefficient of worker m’s gradients received by worker k after
one update step.

[
W (j)

t

]
m,k

= 0 means worker m’s gradient

block j is not received by worker k, which may be dropped
either before or after the averaging during the communication
with the parameter server.

[108] shows W (j)
t satisfies the following properties under

uniformly random dropping environment:

E[W]=α1In+(1−α1)An (2)

E[W (j)
t W (j)ᵀ

t]α1In+(1−α1)An (3)

E[W (j)
t AnW (j)ᵀ

t]=α2In+(1−α2)An (4)

for some constants α1 and α2 satisfying 0 < α2 < α1 < 1.
While [108] considers the algorithm where workers perform
the averaging operation, the properties also hold for dedicated
parameter server setting. Also, as MLT adopts priority
dropping mechanism, (α(j,t)

1 ,α
(j,t)
2) varies in different blocks

j and iterations t. To adopt the convergence proof in [108] for
MLT, we use α1max ,α2max instead, which denotes the maximum
value of max j,t α

(j,t)
1 and max j,t α

(j,t)
2 across all workers and

iterations and preserve the validity of the proof. Thus we can
get the following theorem:

Theorem 1. (Convergence of MLT). Under Assumption
1, choosing learning rate γ to be small enough satisfying
1− 6L2γ2

(1−
√

βmax)2
>0, MLT have the following convergence rate:

1
T

T

∑
t=1

(
E‖∇ f (~xt)‖2+(1−Lγ)E‖∇ f (Xt)‖2

)
≤ 2 f (~0)−2 f (~x∗)

γT
+

γLσ2

n
+4α2max Lγ(σ2+3ξ

2)

+
2α2max Lγ+L2γ2+12α2max L3γ3)σ2C1

(1−
√

βmax)2

+
3(2α2max Lγ+L2γ2+12α2max L3γ3)ξ2C1

(1−
√

βmax)2,

(5)

where

∇ f (~xt)=∇ f (
1
n

n

∑
i=1

~x(i)t)

∇ f (Xt)=
n

∑
i=1

∇ fi(~x
(i)
t)

βmax=max
j,t

(α
(j,t)
1 −α

(j,t)
2)

C1=

(
1− 6L2γ2

(1−
√

βmax)2

)−1

.

It can be inferred from the definitions that β=1 if and only
if the dropping probability of the gradient block is 1, which
may cause the bound to be infinity. In MLT we can make the
assumption that no gradient block has dropping probability
equal to 1, since the magnitude of gradients varies among
different iterations.

By choosing appropriate learning rate γ =
(1−
√

βmax)
2

6L+3(σ+ξ)
√

α2max T+ σ
√

T√
n

, we can get

1
T

T

∑
t=1

E‖∇ f (~xt)‖2≤ (2 f (~0)−2 f (~x∗)+L)σ
√

nT (1−
√

βmax)

+
(2 f (~0)−2 f (~x∗)+L)(σ+ξ)

1−
√

βmax

√
α2max

T

+
L2(σ2+ξ2)

(T
n +α2max T)σ2+α2max T ξ2

+
(2 f (~0)−2 f (~x∗)L

T

(6)

We can see from Equation 6 that the dominant term in the
convergence rate (O(1/

√
nT)) is consistent with prior works

for both centralized SGD and decentralized SGD [65, 108],
which theoretically prove that MLT will converge with the
same order of iterations as the previous vanilla SGD methods.

B Thresholds Setting of Selective Dropping
This section presents the formulation to derive the optimal
thresholds for the selective dropping mechanism (RED/ECN
setting) in §4.2.2 by leveraging the queueing theory [16]. As
a guidance from the analysis, to find the thresholds, we need
to know the size of each layer of the model, and measure the
additional rounds to model convergence caused by the loss
of small/large gradients in each layer. Note that our analysis
does not yet provide optimal thresholds for specific models,
we leave the additional rounds measurement and optimal
thresholds calculation as the future work. The notations used
here are shown in Table 4.

N number of switch queues
B size of switch buffer
Si ECN/RED threshold of queue i
Li length of queue i
λ packet arrival rate
µ packer service rate
M number of model layers
Sm

i size of layer i in the model
θ ratio of small gradients in the model
f S
i (.)/ f L

i (.)additional convergence rounds cost by 1%
small/large gradient loss in layer i

Table 4: Definitions and notations

λ

S1

μ

S2

SN

L1

L2

LN

λ μ

S’1
L’1

S’2
L’2

S’N
L’N

Q1

Q2

QN

Q1

Q2

QN

Switch Model M/M/1/mModel

Figure 20: Problem formulation

Problem formulation: Figure 20 shows the mathematical
modeling of MLT switch. All flows come with the arrival rate
of λ, and enter the corresponding queues. For each queue, if
the sum of queueing packets’ size is larger than Si, all small
gradients packets come to this queue will be discarded. If the
sum is larger than LI , all packets will be discard. To simplify
the analysis and take the advantage of M/M/1/m Model in
queueing theory, we split each queue into two, the first is for
small gradients only and the second is for large gradients only.
The dropping thresholds for each one are S′i and L′i. We can
easily represent Si and Li with S′i and L′i: Si=S′i/θ,Li=S′i+L′i.

Then, we deduce the value of S′i and L′i. The arrival rate for
one queue depends on the corresponding layers’ packet arrival
rate, for simplicity, we assume the rate is proportional to the
size of the layer. Therefore, the arrival rate for queue i is λSm

i
S ,

and for the small gradients’ queue, the value is θ
λSm

i
S , for the

large one, is (1−θ)
λSm

i
S .

The service rate for one queue is determined on its priority,
it is serviced only when the higher priority queues are idle, for
the highest priority queue Q1, the service rate is µ1=µ, the idle
time is 1−ρ1, where ρ1=λ/µ, for queue Q2, the service rate is
µ2=(1−ρ1)µ. Generally, the idle time for queue Qi is 1−ρi,
where ρi=λi/µi and the service rate is µi=Π

i−1
k=0(1−ρk)µ.

Supposed the service rate for small/large gradients is propor-
tional to the size, thus, the service rate for small/large gradients
queue in queue Qi are µS

i =θµi and µL
i =(1−θ)µi respectively.

Therefore the idle time are ρS
i =λS

i /µS
i =λi/µi=ρi=ρL

i .
Suppose the losses of small and large gradients in each layer

affect the convergence rounds independently, our goal is to
minimize the impact of gradients’ loss to model convergence,
that is to find the optimal Si and Li to minimize the loss function
∑

N
i=1
(

f S
i (r

S
i)+ f L

i (r
L
i)
)
, where rS

i and rL
i are the loss ratio for

small/large gradients in queue Qi. There are a lot of existing so-
lutions to solve the optimization problem, e.g. gradient descent.
Here, we only need to calculate the value of rS

i and rL
i . In fact,

for each queue, we can treat it as a typical M/M/1/m model in
queueing theory, specially, one FIFO queue with finite capacity.
Previous work [16] has derived the calculation formula of
loss rate, that is ρm−ρm+1

1−ρm+1 , where ρ is the idle time of the queue.

Therefore, we have: rS
i =[(ρi)

θSi−(θρi)
Si+1]/[1−(ρi)

θSi+1],
rL

i = [(ρi)
Li−θSi − (ρi)

Li−θSi+1]/[1 − (ρi)
Li−θSi+1], then we

express the loss function in terms of known parameters and
thresholds (Si,Li), after solving this optimization problem, we
obtain the optimal thresholds.

C Supplemental Experiments
Due to the space limitation, in the main part of the paper, we
only show the results of VGG16 and Transformer in Figure 11,
12, 16, 17 and 18. Here, we append the results of ResNet50
and GoogleNet in Figure 21, 22, 23, 24, 25 and 26. Please
note that the results/trends embodied in these figures are
consistent with that in the main part of the paper.

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

6

Loss Rate (%)
0 0.01 0.1 1

(a) ResNet50

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

10

20

Loss Rate (%)
0 0.01 0.1 1

(b) GoogleNet

Figure 21: Speedup under gray failure of links.

D Open Questions and Discussion (Cont’d)
Co-existing with non-DNN traffic. This paper focuses on
AI-centric networking (AICN) dedicated to DNN training.
However, in datacenter with multi-purpose traffic, our imple-
mentation of MLT should mitigate its intrusion on non-DNN

GoogleNet [93] (13%) LSTM [42] (11%) ResNet34 [41] (14%) Wide ResNet50 [109] (17%)
Model AlexNet [57](18%) VGG16 [91] (17%) GRU [26] (12%) ResNet50 [41] (16%)

EfficientNetB0 [94] (17%) VGG19 [91] (18%) Wide ResNet101 [109] (16%) ShuffleNetV2 [71] (16%)
VGG13 [91] (16%) ResNet18 [41] (18%) DenseNet169 [47] (16%) ResNet101 [41] (17%)

Table 5: The loss-tolerant bounds measurement with MLT, under the condition that the models converge with the same iterations
to the same accuracy. We use the same models and settings with Table 1.

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

(a) MXNet, ResNet50

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

(b) PyTorch, ResNet50

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

5

10

15

20

of Workers
8 16 32 64

(c) MXNet, GoogleNet

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

5

10

15

of Workers
8 16 32 64

(d) PyTorch, GoogleNet

Figure 22: Speedup with MXNet and PyTorch.
Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

6

of Workers
8 16 32 64

(a) Ring All-reduce, ResNet50

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

10

20

of Workers
8 16 32 64

(b) Ring All-reduce, GoogleNet

Figure 23: Speedup with Ring All-reduce

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

Component
BytePS A A+B A+B+C

(a) ResNet50, Speed

BytePS
A
A+B
A+B+C

Te
st

 A
cc

ur
ac

y
(%

)

0

50

100

Epoch
20 40 60 80

(b) ResNet50, ETA
1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

5

10

15

Component
BytePS A A+B A+B+C

(c) GoogleNet, Speed

BytePS
A
A+B
A+B+CTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch
20 40 60

(d) GoogleNet, ETA
Figure 24: Effectiveness of design components (I).

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

Component
BytePS C C+B C+B+A

(a) ResNet50, Speed

BytePS
C
C+B
C+B+A

Te
st

 A
cc

ur
ac

y
(%

)

0

50

100

Epoch
20 40 60 80

(b) ResNet50, ETA
1e3

Sp
ee

d
(im

ag
es

/s
ec

)
0

5

10

15

Component
BytePS C C+B C+B+A

(c) GoogleNet, Speed

BytePS
C
C+B
C+B+ATe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch
20 40

(d) GoogleNet, ETA
Figure 25: Effectiveness of design components (II).

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePS

Te
st

 A
cc

ur
ac

y
(%

)

0

50

100

Epoch
0 50 100 150

(a) ResNet50, ETA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePS

Te
st

 A
cc

ur
ac

y
(%

)

0

50

100

Time (s)
0 1000 2000

(b) ResNet50, TTA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch
0 20 40 60 80

(c) GoogleNet, ETA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Time (s)
200 400

(d) GoogleNet, TTA
Figure 26: Impact of loss-tolerant bounds.

traffic and ensure bandwidth fair-sharing. A straightforward
idea is to separate DNN and non-DNN traffic into different
queues and perform fair-queueing between them. One issue
to consider is that current commodity switches only have a
limited # of queues (typically 8), so the # of queues dedicated
for MLT become even smaller. For priority queueing, it is
not a concern because the recent design [68] of using two
priority queues to emulate many fine-grained priorities can
be borrowed: the insight is that we only need to privilege
the highest priority flows; MLT can leverage such idea and

only place the foremost layers into the highest priority queue
each time. On the other hand, it may reduce the granularity
of selective dropping of gradients across DNN layers, as this
relates to the # of physical queues available to MLT.
Flexible selective dropping. We consider the gradients
of back layers more important under the assumption of
pre-training (§3.3). As researchers in ML area are improving
the model architectures and training algorithms, the loss
tolerance across model parameters may vary in the future.
MLT allows a flexible selective dropping policy through
tagging. One can simply modify the gradient tagging policy
at end-hosts to fit new features in the training process.
MLT vs SRD. AWS SRD [89] is a hardware transport
protocol that also uses packet spraying to avoid hotpots. It
provides reliable but out-of-order delivery. To be used by
general-purpose applications, SRD still relies on a messaging
layer above it to restore orders. In contrast, MLT exploits
ML-specific properties to provide semi-reliable delivery
without the need of packet order restoration.

	Introduction
	Distributed DNN Training
	Communication Overhead
	Existing Solutions and Problems

	Observations and Opportunities
	Packets Are Order-Independent
	Packet Losses Are Bound-Tolerant
	Packets/Gradients Differ in Importance

	The MLT Design
	Key Ideas
	Mechanisms
	Order-free Per-packet Load Balancing
	Gradient-aware Packet Queueing & Dropping
	Bounded-loss Tolerant Data Transmission

	Implementation
	End-host Network Stack
	Switch Configurations
	ML Framework Integration

	Evaluation
	Testbed Experiments
	Experimental Setup
	Results

	Large-scale Simulations
	Simulation Setup
	Results

	Deep Dive

	Open Questions and Discussion
	Related Work
	Conclusion
	Convergence Analysis of MLT
	Thresholds Setting of Selective Dropping
	Supplemental Experiments
	Open Questions and Discussion (Cont'd)

