
Accelerating Neural Recommendation Training with Embedding Scheduling

Chaoliang Zeng∗, Xudong Liao∗, Xiaodian Cheng, Han Tian, Xinchen Wan, Hao Wang, Kai Chen
iSING Lab, Hong Kong University of Science and Technology

Abstract
Deep learning recommendation models (DLRM) are ex-
tensively adopted to support many online services. Typical
DLRM training frameworks adopt the parameter server (PS)
in CPU servers to maintain memory-intensive embedding
tables, and leverage GPU workers with embedding cache to
accelerate compute-intensive neural network computation and
enable fast embedding lookups. However, such distributed sys-
tems suffer from significant communication overhead caused
by the embedding transmissions between workers and PS.
Prior work reduces the number of cache embedding transmis-
sions by compromising model accuracy, including oversam-
pling hot embeddings or applying staleness-tolerant updates.

This paper reveals that many of such transmissions can be
avoided given the predictability and infrequency natures of
in-cache embedding accesses in distributed training. Based on
this observation, we explore a new direction to accelerate dis-
tributed DLRM training without compromising model accu-
racy, i.e., embedding scheduling—with the core idea of proac-
tively determining "where embeddings should be trained" and
"which embeddings should be synchronized" to increase the
cache hit rate and decrease unnecessary updates, thus achiev-
ing a low communication overhead. To realize this idea, we
design Herald, a real-time embedding scheduler consisting
of two main components: an adaptive location-aware inputs
allocator to determine where embeddings should be trained
and an optimal communication plan generator to determine
which embeddings should be synchronized. Our experiments
with real-world workloads show that Herald reduces 48%-
89% embedding transmissions, leading up to 2.11× and up to
1.61× better performance with TCP and RDMA, respectively,
over 100 Gbps Ethernet for end-to-end DLRM training.

1 Introduction

Deep learning-based recommendation systems have been ex-
tensively applied to a wide range of online services [9, 53],
consuming significant infrastructure capacity and compute
cycles across production datacenters [2]. Training a deep
learning recommendation model (DLRM) poses challenges
in both memory and computation. A typical DLRM (§2.1)
consists of (1) embedding tables, which are large lookup ta-
bles that store millions to billions of semantic embedding

∗ Equal contribution.

vectors (embeddings for short) and consume a tremendous
memory footprint (a few KB per embedding [29] and up to
tens of GBs to TBs in total [30, 47, 52–54]), and (2) multi-
layer perceptron (MLP), which makes up the dense model
and contributes to most of the computation cycles. These
hybrid requirements make it challenging to train a DLRM
efficiently. Specifically, hardware accelerators notably GPUs,
which are widely incorporated into deep learning training, can
execute high-performance dense model computation, but fail
to provide large enough memory capacity to fully support the
embedding tables component.

To address this dilemma, a common practice [2, 21, 29, 38]
separates dense model computations and embedding table op-
erations (lookup and update) in DLRM training. It typically
adopts the parameter server (PS) architecture [26] to maintain
globally shared embeddings in memory-optimized and cost-
effective CPU servers while leveraging GPUs to accelerate the
dense model computation with data parallelism. GPU workers
will further cache a few hot embeddings in their local memory
to accelerate the embedding lookup operation. However, a
single training sample may involve up to thousands of em-
beddings in production workloads [2]. A naive cache-enable
system still suffers from significant communication overhead
for embedding transmissions1 in bulk synchronous parallel
(BSP) [12] training (§2.2), due to stale cached-embedding
updates and embedding gradient synchronizations.

Prior efforts [3, 31] mitigate this communication overhead
by reducing the number of embedding transmissions between
workers and PS. They either oversample training data con-
taining only hot embeddings with fast inter-server collective
communication [3] or apply a staleness-tolerant embedding
update manner [31]. Both approaches deviate from the vanilla
BSP training and do not provide any theoretical guarantee of
model accuracy. However, a high and stable model accuracy
is critical in production. For example, even an order of 0.1%
accuracy loss is intolerable in Meta recommendations [2].
Therefore, DLRM is more favorable to BSP training without
a bias on training embeddings [34, 38].

In this paper, we explore a new direction, i.e., embedding
scheduling (§3), to accelerate distributed DLRM training with-
out compromising model accuracy. The core idea is to deter-
mine (1) where embeddings should be trained by distributing

1In this paper, we refer to both the transmission of embedding value and
the transmission of embedding gradient as embedding transmission.

batch training samples to likely cache-hitting2 workers and
(2) which embeddings should be synchronized by identifying
embeddings to be trained in upcoming iterations for a low
communication overhead. These optimization opportunities
come from two crucial characteristics of in-cache embedding
accesses during the DLRM training.
• Predictability: since the embeddings required by training

samples and the current cache snapshot of each worker
are visible before the computation, the upcoming cache
accesses and their results (hit or not) are predictable under
a partition of batch samples.

• Infrequence: the physical accesses to most in-cache em-
beddings are infrequent enough that the popularity of an
embedding may be less than the total number of training
samples assigned to a worker in the entire training process.

These two characteristics imply that with proactive embed-
ding scheduling during the input generation, there exists a
potential to train each infrequently accessed embedding in
a fixed worker, respectively, which can effectively increase
the cache hit rate and avoid unnecessary synchronizations
for consistency (as this embedding is not required by other
workers). Furthermore, our theoretical analysis proves that
accelerating DLRM training with embedding scheduling can
preserve the model consistency and hence the exactly same
model accuracy as vanilla synchronous training.

When considering the whole DLRM training data flow, it is
important to make the embedding scheduling decision in real
time for two main reasons. First, production recommendation
systems require online training from the streaming data for
high-velocity inference queries [21, 29, 38]. Second, even for
offline training, preparing scheduling decisions for the en-
tire training process in advance is difficult, if not impossible,
given the huge scheduling space and the unpredictable num-
ber of training iterations (and thus the number of scheduling
decisions), which depends on the real-time evaluation result
of the model. As a result, for offline training, we can only
prepare the scheduling result for the early iterations, and we
still need real-time scheduling for the rest training iterations.

Nevertheless, designing a real-time embedding scheduler is
non-trivial. The scheduling budget, i.e., the available schedul-
ing time, to conduct a scheduling decision for an iteration
is limited, as the scheduling overhead should not be larger
than the training time of an iteration to prevent introducing
additional overhead when overlapping training and schedul-
ing. Moreover, the scheduling budget varies among different
workloads and training settings, so the embedding scheduler
must be adaptive to different training tasks.

To this end, we propose Herald3 (§4), a real-time embed-
ding scheduler that leverages information including the re-
quired embeddings of input samples and the locations of

2In this paper, we refer to hitting the latest version of an embedding in
the cache as a cache hit for short.

3We presented a preliminary idea of Herald in an earlier workshop pa-
per [49].

those embeddings, to reduce embedding transmissions and
thus achieve efficient DLRM training. Herald addresses the
above challenges with a decoupling idea. Specifically, it
determines "where embeddings should be trained" via an
adaptive location-aware inputs allocation (LAIA) algorithm.
The adaptive LAIA algorithm leverages the diverse ratios
of infrequently-accessed embeddings among embedding ta-
bles, and conducts partition decisions based on a subset of
selective tables for the batch inputs partition. Therefore, it ef-
fectively meets various scheduling budgets with a high cache
hit rate. Herald further identifies "which embeddings should
be synchronized" for this iteration in conjunction with the
batch partition result of the next iteration by enabling sample
prefetching. Herald figures out a minimal list of embeddings
that should be synchronized to minimize gradient transmis-
sions via an optimal communication plan generator.

We have implemented Herald on top of HET [31] (§5)
and evaluated it via extensive simulations and a small-scale
testbed with 8 Nvidia 3090 GPU workers on typical real-
world workloads (§6). Evaluation results show that compared
with HET, Herald reduces 48%-89% embedding transmis-
sions. As a result, Herald delivers up to 2.11× and up to
1.61× better performance with TCP and RDMA, respectively,
over 100 Gbps Ethernet for end-to-end DLRM training.

This paper makes the following contributions:
• We explore embedding scheduling as a new direction to

accelerate DLRM training by leveraging two key character-
istics of in-cache embedding accesses, i.e., predictability
and infrequency (§3).

• We design Herald, a real-time embedding scheduler to
meet various scheduling budgets while preserving a high
scheduling quality (§4).

• We verify the benefit of embedding scheduling via testbed
experiments on our Herald implementation (§5 and §6).
This work does not raise any ethical issues. Herald is avail-

able at https://github.com/HKUST-SING/herald.

2 Background & Motivation

2.1 Deep Learning Recommendation
A deep learning recommendation system models the recom-
mendation decision as a problem to predict the probability of
a specific event, e.g., the likelihood of a web viewer watching
the recommended content (video or article). To fully exploit
high-dimensional (categorical) features, the technique of rep-
resentation learning is widely applied to project a category ID
to a dense feature vector, also called embedding. This embed-
ding is used as a representation of the category ID to apply in
numerical computation for recommendation processing.
DLRM architecture. Figure 1 illustrates the high-level archi-
tecture of a DLRM with the example of apps recommendation.
There are two primary components: embedding tables and

https://github.com/HKUST-SING/herald

Continuous
(Dense)
Features

Training
Sample

(User-App
pair)

Categorical
(Sparse)
Features

App 1
App 2
App 3

Age

#App Installs

Use
r In

sta
lled

 App
s

Recommended
App Type

App Emb. Table

MLP
Stack

Preference

Type Emb. Table

Index Embedding

1 [1.5, 3.3, …]
2 [3.2, 4.5, …]
3 [8.2, 6.9, …]
… …

…

…

…

Type 1
Type 2
Type 3
…

Index Embedding

1 [7.5, 3.3, …]
2 [9.2, 4.3, …]
3 [8.4, 6.7, …]
… …

Figure 1: A high-level architecture of a typical DLRM with
the example of apps recommendation.

Distributed Storage
(Hive etc.)

Streaming Data
(Kafka etc.)

MLP

GPU Worker
MLP

GPU Worker
MLP

GPU Worker

Embedding Tables

CPU Parameter Server

Embedding Pull Gradient Push

Figure 2: The data flow of DLRM training in production
environments. We omit the data flow of MLP synchronization,
which is not the focus of this paper.

multi-layer perceptron (MLP). The DLRM leverages embed-
ding tables to project sparse features into dense representa-
tions, i.e., embeddings, by looking up every table with the
corresponding category IDs as indexes. All these dense fea-
tures, including embeddings and dense inputs, are processed
by the MLP layer for the final prediction result. The value
of embeddings, together with the parameters in MLP, will be
iteratively updated during the training process.
Overview of distributed DLRM training systems. Figure 2
shows the data flow of the typical distributed DLRM train-
ing [2, 21, 29, 38]. DLRM training systems usually support
different types of data I/O interfaces, e.g., Hive and Kafka, to
provide good compatibility for various scenarios. Given the
diverse requirements on computing and memory for MLP and
embedding tables, respectively, DLRM training systems tend
to separate the training of these two components. They train
the MLP layer on compute-optimized GPU workers with data
parallelism. To accommodate the scaling up of embedding
table sizes (tens of GBs to TBs [30,47,52–54]), they maintain
embeddings in memory-optimized CPU PS. This separation
design introduces significant communication overhead when
applying BSP for the non-degraded and reproducible model
accuracy [5, 22, 34, 38]. In every training iteration, workers
pull embeddings from PS on demand and push embedding
gradients to PS at the end of this iteration.
Embedding cache. Given the skewed popularity distribution
of embeddings, recent work [3, 31, 52] reduces embedding

Model Dataset
W1 Wide & Deep [7] Criteo AD [10]
W2 Neural Collaborative Filtering [19] MovieLens 25M [17]
W3 DeepFM [16] Avazu [23]
W4 Deep & Cross [43] Criteo Sponsored Search [40]

Table 1: Workloads in our case studies.
W1 W2 W3 W4

N
or

m
. e

m
b.

 p
ar

am
.

1

2

3

4

Per-worker batch size
64 128 256

Figure 3: The number of embeddings used in an iteration in-
creases with the per-worker batch size. The results are normal-
ized to that number with a batch size of 64 for each workload.

communications by exploiting an embedding cache in GPU
workers. However, a naive cache-enable system provides lim-
ited performance improvement for BSP training, as it saves
an embedding pull only when the queried embedding hits
the cache (with the latest version) and does not save any
embedding synchronizations. Therefore, they optimize the
communication cost by compromising the BSP training pro-
cedure. For example, HET [31] tolerates a bounded staleness
of each embedding by tracking the embedding version. Upon
retrieving an embedding from the cache, it first compares the
local version with the global version in PS and only pulls
the embedding from PS if the difference between these two
versions exceeds a threshold. A similar behavior happens for
gradient synchronizations. HET still communicates with PS
in every iteration for version checking, but these costs are
much smaller than those of embedding transmissions.

2.2 Embedding Communication Matters

To quantify the contribution of embedding communication
in the end-to-end DLRM training with BSP, we study typical
DLRM workloads as listed in Table 1.

In the DLRM training, we find that a larger batch size (the
number of training samples in an iteration) may lead to more
embedding transmissions. The reason is that different sam-
ples may involve different sparse features and thus operate
on different embeddings. Therefore, the number of operated
distinct embeddings in an iteration grows with a larger group
of samples (a larger batch size). Figure 3 demonstrates that
the number of distinct embeddings used in an iteration can
increase 2.7×-4.0× when the per-worker batch size increases
from 64 to 256. However, the number of synchronized param-
eters in the MLP layer only depends on the MLP architecture,
and thus does not change with the batch size.

We evaluate the distributed training efficiency of HET [31],
the state-of-the-art cache-enabled embedding model train-
ing framework. The evaluation configuration follows the de-
fault setting as described in §6.1. We disable the embedding

W1 W2 W3 W4
(r

at
io

 o
f t

ot
al

 ti
m

e)
C

om
m

. o
ve

rh
ea

d

0.3

0.4

0.5

0.6

Embedding size
128 256 512

Figure 4: Embedding communication overhead can consume
up to 63% of the end-to-end training time. The embedding
size is the dimensions of an embedding or the number of
columns of embedding tables.

prefetching4 to precisely quantify the embedding communi-
cation overhead and its breakdown. The result is shown in
Figure 4, where the embedding communication overhead for
many of these workloads is high despite using state-of-the-art
communication libraries like NCCL, and consumes up to 63%
of end-to-end DLRM training time. It is worth noting that the
ratio of the communication time to the total training time may
not monotonically increase with the embedding size (the num-
ber of dimensions of an embedding or the number of columns
of embedding tables), as the embedding size increases both
computation time and communication time.

The embedding communication includes worker pull and
worker push, which can be caused by either cache miss or
cache update. When a cache miss occurs, the worker will
pull the required embedding and push an evicted embedding
if the cache is full. For cache updates, the worker will push
the embedding gradients and pull the required embeddings
with the latest version updated by other workers. Based on
our evaluation, cache update is the major reason that causes
embedding transmissions (71%-95%). In terms of the com-
munication direction, pull and push contribute to a similar
overhead (less than 9% coefficient of variance).

3 Embedding Scheduling

To reduce the number of worker pulls/pushes during the train-
ing, we propose a new direction to accelerate distributed
DLRM training without compromising the model accuracy:
embedding scheduling, which utilizes an embedding sched-
uler to determine where embeddings should be trained and
which embeddings should be synchronized.

3.1 Rationales
In the forward propagation, a cache hitting on the required
embedding can prevent worker pull and potential worker push
caused by a cache eviction. Therefore, the embeddings to be

4HET supports prefetching the embeddings that will be used in the next
iteration from the PS at the beginning of an iteration. We will enable this
feature in end-to-end evaluation. However, prefetching brings limited im-
provement in vanilla BSP training, since most embedding pulls are for the
updated embeddings as shown in the later paragraph, and these updated em-
beddings are valid after finishing the synchronization of the current iteration.

trained can be scheduled to appropriate workers, where the
training embeddings in each worker are most likely to hit the
cache. Meanwhile, accessing an embedding in the forward
propagation will incur a corresponding update in the back-
ward propagation. However, synchronizing every embedding
update is unnecessary, even in synchronous training. The rea-
son is that an embedding is related to a sparse feature, and this
feature may not be trained in the following iterations by other
workers. It may happen in two scenarios: (1) this feature does
not appear in the later training samples, or (2) this feature
is only trained by the same worker. In other words, the up-
dated embeddings only need to be synchronized to PS when
they are required by other workers in the following training.
Putting all this together, we derive two philosophies to reduce
the embedding transmissions:

P 1. training in-cache embeddings as much as possible, and

P 2. performing on-demand synchronizations.

These philosophies can be followed by proactively partition-
ing the batch samples among workers and identifying the
necessary embeddings for synchronizations.

Figure 5 describes a contrived and illustrative example
to elaborate on how embedding scheduling reduces commu-
nication overhead. The vanilla training without embedding
scheduling (Figure 5b) neither optimizes for cache hit rate
nor avoids unnecessary embedding synchronizations due to
the ignorance of workers’ cache content and the following
inputs. As a result, the cache miss or hit during the training
is totally random, and every updated embedding should be
synchronized. However, such embedding communication can
be optimized with embedding scheduling (Figure 5c).

We can formulate the scheduling problem as a Markov De-
cision Process (MDP) as described in Appendix A. However,
given the complexity of finding a globally optimal scheduling
decision for the entire training process, we downgrade the
scheduling problem to find a local quality decision for every
iteration in this work.

3.2 Opportunities
Embedding scheduling is feasible given two characteristics
of in-cache embedding accesses.
Predictability. There are two prerequisites for embedding
scheduling: knowing current cache snapshots as well as pre-
dicting and determining future embedding accesses. Fortu-
nately, both are achievable in DLRM training. As modern
training frameworks decouple the training computation and
the input preparation, we can foresee and decide proper em-
bedding accesses a-priori when proceeding with input gen-
eration for each worker. The input generation is usually per-
formed in a data loader, which partitions a batch of inputs into
multiple micro-batches for every worker. Meanwhile, main-
taining cache snapshots in the data loader is trivial. Therefore,

Id: 4 Id: 2 Id: 0Iter. 𝑡

Iter. 𝑡 + 1

Parameter Server

Id: 1 Id: 3 Id: 5

Worker

Id: 0 Id: 1
Emb Cache

Worker

Id: 2 Id: 3
Emb Cache

Worker

Id: 4 Id: 5
Emb Cache

(a) Toy example

Iter. 𝑡 + 1

Iter. 𝑡

Parameter Server
Pull 4 Push 4 Push 2 Pull 0 Push 0

Worker

Id: 0 Id: 1
Emb Cache

Worker

Id: 2 Id: 3
Emb Cache

Worker

Id: 4 Id: 5
Emb Cache

Id: 4 Id: 2 Id: 0

Id: 1 Id: 3 Id: 5

(b) Training w/o embedding scheduling

Iter. 𝑡 + 1
Id: 0 Id: 2 Id: 4

Worker

Id: 0 Id: 1
Emb Cache

Iter. 𝑡

Parameter Server

Worker

Id: 2 Id: 3
Emb Cache

Worker

Id: 4 Id: 5
Emb Cache

Id: 1 Id: 3 Id: 5

No push/pull

(c) Training w/ embedding scheduling
Figure 5: (a) A contrived example showing performance gain with embedding scheduling, assuming that all caches have empty
slots for new embeddings. (b) The vanilla training incurs a total of 2 times worker pulls and 3 times worker pushes at iteration
t. (c) The training with embedding scheduling does not incur any embedding transmissions at iteration t, since all trained
embeddings hit caches and their updates are not required by the others in the later iteration.

Criteo AD
MovieLens 25M

Avazu
Criteo Sponsored Search

D
oI

0.99996
0.99998
1.00000

Num. of workers
0 20 40 60 80 100 120

Figure 6: The degree of infrequence is consistently high
across different scales of training clusters in studied datasets.

a tailored data loader with an embedding scheduler can allo-
cate input samples to workers based on their in-cache embed-
dings and identify embedding dependencies among iterations
for on-demand synchronizations.
Infrequency. Although a small set of "hot" embeddings
could contribute to the majority of the total number of ac-
cesses [3,31], the access of individual in-cache embeddings is
usually infrequent. We define that an in-cache embedding is
infrequently accessed when the popularity of this embedding
is less than the total number of samples trained by a worker
during the entire training epoch. The more infrequently-
accessed embeddings there are the more potential transmis-
sions can be optimized. To evaluate the degree of infrequence
(DoI), i.e., the ratio of infrequently-accessed embeddings over
the whole in-cache embeddings, we make profiling on real-
world datasets as listed in Table 1, and consider each worker
can cache 10% of the total embeddings. As shown in Figure 6,
our profiled datasets exhibit consistently high DoI (> 99%)
even in large training clusters. The high DoI indicates that
most in-cache embeddings can each be trained in a consistent
worker and their updates can avoid global synchronizations.

3.3 Model Consistency Analysis

Accelerating distributed DLRM training under BSP with em-
bedding scheduling can preserve model consistency and thus
the exactly same model accuracy. Compared with vanilla dis-
tributed training, embedding scheduling makes two changes:
a tailored input partition algorithm (vs. a random partition
algorithm) and on-demand synchronizations (vs. full-set syn-
chronizations). In BSP, on-demand synchronizations ensure

that all workers use the latest parameters for the incoming
training iteration, which is the same behavior as the vanilla
distributed training performs.

We prove that the training model will not be affected by the
choice of input partition algorithm under BSP. Considering a
parameter optimizer followed by the SGD algorithm [14], the
gradient calculation for model weights w on a given batch of
n training samples is expressed as follows:

∇w =
1
n

Σ
n
i=1

∂L(xi,w)
∂w

, (1)

where xi is the i-th training sample of the batch, and L is
the loss function. Based on Equation 1, the gradient of the
batch is the sum of the individual gradient for each training
sample in the batch. Since the individual gradient depends
only on input samples and current model weights, which have
been synchronized before this iteration begins under BSP,
partitioning the batch into m micro-batches takes no effect on
the gradient result:

1
n

Σ
n
i=1

∂L(xi,w)
∂w

=
1
n

Σ
m
i=1Σ

n/m
j=1

∂L(xi j,w)
∂w

, (2)

where xi j is the j-th training sample in the i-th micro-batch
(for worker i). Therefore, any partition result generated by any
partition algorithm preserves the same gradients as in BSP
throughout training and hence converges to the same model.

4 Design

Based on the above ideas, we design an embedding scheduler,
called Herald, to accelerate distributed DLRM training on top
of the state-of-the-art cache-PS architecture [3,31]. Real-time
scheduling is a crucial property when 1) training over stream-
ing samples [21, 29, 38], as pre-processing the whole dataset
is difficult, if not impossible, in this case, and 2) the number
of training iterations (scheduling decisions) is unpredictable.
In this work, we target to support real-time scheduling, where
only a few batch inputs instead of the whole dataset are avail-
able at a time and the available batch inputs keep updating
during the training procedure. We leave discussions on break-
ing this assumption in §7.

W1 W2 W3 W4
N

ec
e.

 it
er

. t
im

e
(m

s)

0

20

40

Per-worker batch size
64 128 256

Figure 7: The necessary iteration time varies among different
datasets and different per-worker batch sizes, where the em-
bedding size is 256.

Inputs partition
(iteration 𝑡)

Batch inputs
(iteration 𝑡)

Adaptive location-aware
inputs allocation (§4.3)

Communication plan
(iteration 𝑡 − 1)

Communication plan
generation (§4.4)

Scheduling budget

Figure 8: Herald overview.

4.1 Challenges
Integrating real-time embedding scheduling into training
frameworks is challenging due to limited and varied schedul-
ing budgets, i.e., the available scheduling time.
Limited scheduling budget for real-time scheduling. For a
scheduling problem, there exists a tradeoff between schedul-
ing quality and scheduling overhead. High-quality embedding
scheduling can effectively reduce communication overhead,
but at the cost of consuming a long scheduling time. Such
long scheduling time, however, prevents the scheduling from
being hidden by the iterative training, and thus introduces
extra training overhead. The scheduling budget of real-time
scheduling should be smaller than the iteration training time.
Varied scheduling budgets across different workloads and
training settings. The scheduling budget is not static and
is affected by many factors, including workload and training
setting. We regard necessary iteration time, i.e., the training
time excluding the embedding communication time in an iter-
ation, as a valid scheduling budget, and show these results in
Figure 75 with the same setting as Figure 4. It reveals an up to
78% coefficient of variance across different workloads within
the same setting and an up to 67% coefficient of variance
across different settings within the same workload. Varied
scheduling budgets indicate that a static scheduling algorithm
is not generic enough to support highly variant workloads and
settings.

4.2 Overview
Figure 8 overviews Herald, which decouples the schedule
targets to support real-time scheduling. Specifically, Herald
determines "where embeddings should be trained" via an

5Following the industry practice [2], we focus on weak scaling, which
linearly increases the total batch size with the number of workers, instead of
strong scaling, which keeps the per-iteration total batch size constant.

Herald Data loader Worker

Comm. plan (𝒕 − 𝟏)

Inputs (𝒕)

Batch inputs
(𝒕)

Parameter server

Updated emb.
(𝒕 − 𝟏)

Iteration training
(𝒕 − 𝟏)

Comm. plan (𝒕)

Inputs (𝒕 + 𝟏)

Batch inputs
(𝒕 + 𝟏)

Updated emb.
(𝒕)

Iteration training
(𝒕)

Figure 9: Herald training data flow. Herald leverages input
prefetching to generate the communication plan in time.

adaptive location-aware inputs allocation (LAIA) algorithm
(§4.3), which meets varied scheduling budgets with a high
cache hit rate. Herald determines "which embeddings should
be synchronized" under a given inputs partition via an optimal
communication plan generator (§4.4). The above scheduling
process is executed on every worker instead of a centralized
orchestrater, so that the scheduling can be computed locally
to save the distribution time of scheduling results.

As discussed before (§3.1 and Appendix A), the scheduling
scope in the current design choice is within the single batch
to achieve a low scheduling overhead. Given a batch of inputs
of iteration t, Herald first generates a partition solution, which
allocates each input to a proper worker for iteration t based
on current embeddings’ location information. However, there
is a lag in the generation of the communication plan, which
depends on the requirements of the next iteration. To guaran-
tee that each worker can retrieve the latest embeddings under
the generated partition solution, Herald figures out an optimal
communication plan, which lists a minimal list of embeddings
that each worker should synchronize with PS, for the previ-
ous iteration, i.e., iteration t − 1. We discuss extending the
scheduling scope to multiple batches in §7.

Figure 9 illustrates the data flow of the training with Her-
ald. From a worker’s point of view, in every iteration, the
worker receives both training samples and a communication
plan from the data loader before proceeding computation, and
synchronizes the embeddings listed in the communication
plan after backward propagation. Due to the time lag of com-
munication plan generation, Herald needs to partition the next
batch inputs before proceeding to that batch, which is possi-
ble as prefetching next batch samples is already commonly
adopted in today’s data loaders [1, 6, 36].

It is worth noting that Herald only controls the embedding
update from workers to PS (i.e., worker push), but remains
the update manner from PS to workers (i.e., worker pull)
the same as existing cache systems operate. Herald relies
on the internal cache consistency protocol in existing cache
systems (e.g., version check in HET [31]) to pull the updated
embeddings from PS and cache them in individual workers.
Therefore, Herald preserves the same cache consistency as
the underlying cache system. Moreover, as the cache miss
results in only a minor fraction of embedding transmissions
(§2.2), Herald does not optimize the policy of embedding

Algorithm 1: Static LAIA

input :Batch samples (Inputs) and worker list
(Workers)

output :Inputs partition (Alloc)
1 Init Alloc;
2 Init all workers as available;
3 capacity = size(Inputs)/size(Workers);
4 for i in Inputs do
5 for w in Workers do
6 score(i,w) = |cache(w)∩ embs(i)|;
7 end
8 Find worker w with the largest score among the

available workers;
9 Alloc(i,w) = 1;

10 if ΣiAllocw == capacity then
11 Mark w as unavailable;
12 end
13 end
14 return Alloc;

cache evictions caused by the cache miss to avoid additional
scheduling overhead.
Scheduling budget measurement. To preserve real-time
scheduling, the scheduling budget should not be larger than
the iteration time, which consists of both computation time
and communication time. However, with embedding schedul-
ing, the communication depends heavily on the scheduling
results, which are hard to predict precisely before training6.
Therefore, we utilize the necessary iteration time (as defined
in §4.1), which can be profiled in advance, as a loose schedul-
ing budget. For Herald scheduling, as only the input partition
can adapt to the scheduling budget, and the upper bound of the
communication plan generation time is predictable given the
workload and the training setting, the real scheduling budget
used in Herald should be the necessary iteration time minus
the communication plan generation time. As our measure-
ment is conservative (by considering a loose metric), it is not
likely to overestimate the scheduling budget. Furthermore,
our evaluation (§6.2.2) shows that Herald is resilient to the
underestimation of the scheduling budget.

4.3 Location-aware Inputs Allocation

We first elaborate a static LAIA algorithm that heuristically
partitions batch inputs into proper workers based on the cur-
rent cache snapshots and a full set of table information. Then
we observe that embedding tables are not equally important
for scheduling, with the diverse DoIs among embedding ta-
bles. Based on this observation, we introduce an adaptive
LAIA algorithm, which conducts the partition with selective
embedding tables to meet the scheduling budget.

6Even during training, the communication time after scheduling can vary
among iterations.

D
oI

0
0.5
1.0

0 20 40 60 80 100 120
(a) Criteo AD

D
oI

0
0.5
1.0

0 20 40 60 80 100 120
(b) MovieLens 25M

D
oI

0
0.5
1.0

0 20 40 60 80 100 120
(c) Avazu

D
oI

0

0.5

1.0

Num. of workers
0 20 40 60 80 100 120

(d) Criteo Sponsored Search
Figure 10: The DoI of different embedding tables exhibits a
large variance. Each line represents an embedding table.

Static LAIA. As it is impractical to conduct a brute-force
search in real time for the optimal partition solution that max-
imizes the cache hit rate, we propose a heuristic partition
algorithm, LAIA, as shown in Algorithm 1. LAIA calculates a
score to quantify the relevance between every input sample
and worker (Line 6). The score is defined as the number of
embeddings that reside in the worker cache (with the latest
version) and are required by the input sample simultaneously.
After scoring, LAIA allocates each input to the worker with
the highest score (Line 8-9) while ensuring evenly distributed
inputs among workers (Line 10-12).

Furthermore, when there is a tie in finding the largest score
(Line 8), LAIA will randomly select a worker from the candi-
dates. This randomization tends to evenly cache embeddings
across all workers. Therefore, in the later scheduling, LAIA
can achieve a good balance of the total score (i.e., cache hit
rate) among workers. We do not proactively treat the load bal-
ance as a scheduling goal in Algorithm 1 for a low scheduling
overhead. With consecutive iterations, LAIA moves towards
gathering embeddings that tend to be accessed together in
many training samples on the same worker.
DoI diversity among tables. We observe that since every
embedding table represents a unique physical feature, the dis-
tribution of embedding popularities in different tables may
exhibit different skewness and hence diverse table DoIs. Fig-
ure 10 shows this DoI variance, where we measure the DoI of
an individual table as the ratio of the number of infrequently
accessed embeddings over the total number of in-cache em-
beddings of this table. Among the profiled datasets (except
for MovieLens 25M which has only two tables7), there exist

7For those datasets that have a small number of tables, although the DoI
diversity is not obvious, they have a low demand for this property, as their
scheduling overhead is inherently small.

both tables with consistently high DoI (> 99%) and tables
with relatively low DoI (as low as < 1%). Recalling that the
potential performance gain achieved by embedding schedul-
ing comes from the infrequent embedding updates (§3.2),
this DoI diversity indicates that the embedding tables are not
equally important for scheduling.
Being adaptive. Based on the above observation, we can ac-
commodate Algorithm 1 to varied scheduling budgets. In
Algorithm 1, scoring (Line 4-7) is one of the most time-
consuming functions due to its three-layer loop, including
inputs iteration, workers iteration, and tables iteration (im-
plicitly shown in Line 6). Therefore, by only considering
scheduling-worthy (i.e., high-DoI) embedding tables, the time
overhead of scoring and thus Algorithm 1 can be reduced.
Given the scheduling budget, we can determine the maximum
number, k, of embedding tables that should be considered in
scoring.
Table profiling. To identify the k embedding tables with
the highest DoI in runtime, we incorporate a table profiler
into Herald to continuously measure the DoI of each table.
Specifically, the profiler counts the appearance of every em-
bedding in every batch input and maintains the DoI of each
table dynamically. The profiling runs parallel to the allocation
function to avoid interference with the scheduling process.
The profiler periodically updates the k embedding tables with
the highest DoI to LAIA for scheduling. The interval to update
the profiling result can be decided by either the change of the
selective embedding tables or the profiling time.

4.4 Communication Plan Generation

To figure out the necessarily synchronized embeddings for
on-demand synchronizations, we introduce a concept of em-
bedding dependency. An embedding dependency appears
when an embedding with the latest version is cached on a
worker and there are other workers assigned to train this em-
bedding in this iteration. The worker caching the latest version
should synchronize this embedding to PS before this itera-
tion begins. Therefore, all embedding dependencies of this
iteration become the communication plan of the previous iter-
ation. As discussed in §4.2, Herald can timely generate the
communication plan with the inputs prefetching.

Based on the above idea, Herald generates the commu-
nication plan for each worker given the inputs partition re-
sult of the next iteration, as described in Algorithm 2. The
embs_by_others are all embeddings required by workers ex-
cept for worker w itself (Line 2) in the next inputs, and the
embedding dependencies (communication plan) of worker w
are the intersection of embs_by_others and its cached embed-
dings (Line 3). The generated communication plan is optimal
between two iterations, as it contains the minimal list of em-
beddings required by other workers in the next iteration. Since
we focus on the PS architecture, the embedding dependencies
of a worker do not need to be distinguished among target

Algorithm 2: Embedding dependency generation
input :Batch samples (Inputs), worker list

(Workers), and inputs allocation (Alloc)
output :Embedding dependency (Dep)

1 for w in Workers do
2 embs_by_others = embs(Inputs−Allocw);
3 Depw = embs_by_others∩ cache(w);
4 end
5 return Dep;

workers. We will discuss how to support on-demand synchro-
nization with peer-to-peer communication in Appendix B.

5 Implementation

We have implemented a system prototype of Herald with C++
and Python. Besides the design described in §4, Herald main-
tains cache snapshots of all workers inside the scheduler to
provide information on embedding locations. These cache
snapshots are used for the scoring function in inputs alloca-
tion, and updated at the end of the allocation based on the
partition result, which avoids synchronizations among sched-
ulers in different workers. Cache snapshots follow the same
caching policy as workers’ for consistency.
HET plugin. We have integrated Herald in HET8. We replace
the data loader implementation in HET with communication
plan support. Herald data loader returns training samples and
synchronized embedding indexes as sparse inputs. To support
prefetching batch inputs while preventing from interfering
with the training process, Herald is launched by dedicated
threads, and the scheduling results from Herald are transmit-
ted to the data loader via shared memory.
Multi-threading. We utilize spare CPU resources to acceler-
ate the scheduling by enabling multi-threading. We manage a
thread pool for multi-threading processing. The parallelism
can be easily applied to most Herald functions, including scor-
ing (Line 4-7 in Algorithm 1), cache snapshots update, and
communication plan generation (Algorithm 2). However, it
is non-trivial to parallelize the function of worker allocation
(Line 8-12 in Algorithm 1) due to its dependency between
two allocation actions. Preserving the consistency of the al-
location result inevitably introduces a lock and limits the
parallelism of this function. We implement two versions of
the worker allocation function: a single-threading version
and a lock-free multi-threading version which may compro-
mise the result consistency. In the multi-threading version, we
evenly divide the worker capacity and training samples among
threads. Therefore, each thread can independently allocate
its samples to the workers without considering the allocation
result of other threads. The allocation result of each thread is
then merged into the final allocation.

8https://github.com/Hsword/Hetu

https://github.com/Hsword/Hetu

6 Evaluation

Our evaluation seeks to answer the following three questions:
How does Herald improve cache embedding communica-
tion overhead? Simulation experiments (§6.2.1) with repre-
sentative datasets show that Herald reduces the average num-
ber of embedding transmissions by 48%-89%, where LAIA
algorithm contributes to the major improvement according to
the performance breakdown.
How lightweight and effective is Herald for real-time and
adaptive scheduling? Deep dive profiling (§6.2.2) on Herald
shows that even adopting the single-threading worker allo-
cation function, multi-threading benefits 92% of scheduling
time. Furthermore, adaptive Herald preserves consistently
high scheduling quality with less than 1.11× transmission
increase compared with static Herald across different scales
of training clusters.
How does Herald perform in end-to-end DLRM training?
Testbed experiments (§6.3) with real-world workloads show
that Herald provides 1.09×-2.11× and 1.02×-1.61× speedup
over HET in end-to-end training with TCP and RDMA, re-
spectively, over 100 Gbps Ethernet. Herald preserves the ef-
fectiveness in the multi-GPU and multi-node scenario.

6.1 Evaluation Settings
Our evaluations include both cache simulation for micro-
benchmarks and testbed for end-to-end training. Unless men-
tioned otherwise, both the simulation and testbed contain 8
workers and 1 PS. Each worker contains an embedding cache
following LRU policy. The embedding cache can house 10%
of PS-side embedding tables, following the caching strategy
studied in [25, 31, 48]. We adopt the single-threading version
of the worker allocation function whenever possible for the
best scheduling quality, and adopt the multi-threading version
when evaluating the scalability of LAIA algorithm (§6.2.2).
The default thread pool size in Herald is 16.
Testbed. Both workers and PS are equipped with a 20-core
Intel Xeon Gold 5218R CPU at 2.1 GHz and 64 GB (256
GB in PS) of RAM. Each worker is also equipped with an
Nvidia 3090 GPU. These workers and PS are connected at 100
Gbps Ethernet with Mellanox ConnectX-5 NICs. The default
underlying transport is TCP. We also incorporate RDMA into
HET implementation. All machines run Ubuntu 18.04 (Linux
5.4.0), CUDA 11.3.19, cuDNN 8.2.0, and NCCL 2.9.9.
Baseline. We compare Herald with HET [31] and FAE [3].
FAE is designed in a static caching manner. For a fair compar-
ison, we implement FAE on top of HET. As discussed in §1
and §8, both baselines reduce the embedding transmissions by
compromising model accuracy and are orthogonal to Herald.
Therefore, we adopt vanilla BSP training in HET and FAE.
Other settings are configured as same as Herald. Baselines
and Herald leverage a hybrid synchronization model [24],

9We upgrade HET from CUDA 10 to CUDA 11.

Optimization Reduced embedding transmissions
Pull Push Overall

Vanilla (w/o embedding scheduling) - - -
LAIA (§4.3) 54% 17% 35%
Communication plan (§4.4) 0% 13% 7%
Herald 54% 63% 59%

Table 2: Breakdown of contribution by each optimization with
the W1 dataset.

where MLP parameters are synchronized in ring-based all-
reduce and embedding parameters are synchronized with PS.
Baselines and Herald enable the embedding prefetching.
Workloads. We use four real-world models with representa-
tive datasets for end-to-end experiments, as listed in Table 1.
We exclude the first 10 iterations for warm-up and report
the performance for the subsequent iterations. We do not in-
clude training accuracy results because Herald can preserve a
consistent model accuracy, as analyzed in §3.3. The default
batch size is 128 in the simulation and 256 in the testbed,
and the default embedding size is 512. Since Herald with
multi-threading can meet the scheduling budget of the above
workloads in the default training setting based on our evalua-
tion (§6.2.2), we adopt static LAIA (Algorithm 1) rather than
its adaptive version in end-to-end experiments by default.

6.2 Micro-benchmarks

6.2.1 Cache Performance

We first study the cache behaviors by comparing Herald with
vanilla training manner, i.e., a random inputs partition and
full-set embedding synchronizations.
Cache behaviors. Figure 11 shows the number of cache
embedding transmissions by normalizing to that of vanilla
training across different datasets. Overall, applying Herald
can reduce 48%-89% embedding transmissions. We further
decompose the cache embedding transmissions based on the
communication direction. It shows that Herald effectively
reduces the number of worker pulls by 43%-88% and worker
pushes by 51%-90%.
Improvement breakdown. To figure out the reason behind
these improvements, we further break down the contribu-
tion made by each optimization with the Criteo AD dataset
(W1), as shown in Table 2. We find that LAIA contributes to
the major improvements. For worker pull, LAIA distributes
the embeddings required by inputs to most likely hit worker
caches (reducing the number of worker pulls by 54%). Mean-
while, the worker push performance is jointly optimized by
LAIA and communication plan, where the location-aware
partition mechanism reduces embedding dependencies while
on-demand synchronizations make such dependencies reduc-
tion benefit to embedding transmissions reduction. Therefore,
the optimization of LAIA and communication plan alone only
reduces the number of worker pushes by 17% and 13%, re-
spectively, but the combination of the two, i.e., Herald, can
reduce the number of worker pushes by 63%.

Overall Push Pull

Em
be

dd
in

g
tra

ns
m

is
si

on
s

0

0.5

1.0

W1 W2 W3 W4

Figure 11: Herald can reduce 48%-89%
embedding transmissions.

3.2 0.6 2.6 1.3

Scoring
Worker allocation

Cache snapshots update
Communication plan generation

Timeline (ms)
0 1 2 3 4 5 6 7 8

Figure 12: Breakdown of scheduling
overhead with the W1 dataset.

24 24 24

14

8
4

Increased transmissions
Num. selective tables

In
cr

ea
se

d
tra

ns
m

is
si

on
s

0

0.5

1.0

1.3

N
um

. of tables

0

10

20

Num. of workers
64 72 80 88 96 104

Figure 13: Adaptive LAIA is scalable
with less than 1.11× transmissions in-
crease.

2.11

1.5

1.09

1.38
1.61

1.22
1.02

1.14

TCP RDMA

Sp
ee
du
p

0

0.5

1.0

1.5

2.0

W1 W2 W3 W4

Figure 14: Herald improves end-to-end
training by up to 2.11× speedup over
TCP and up to 1.61× over RDMA.

0.9 0.89

0.52

0.84

0.42

0.6

0.42

0.6

Herald HET
Sc

al
in

g
fa

ct
or

0

0.5

1.0

W1 W2 W3 W4

Figure 15: Herald utilizes distributed
computing resources efficiently with
high scaling factors.

1.97
2.15 2.05 2.11

Sp
ee
du
p

0

1

2

3

4% 6% 8% 10%

Figure 16: Herald preserves a consistent
effectiveness under limited cache sizes.

6.2.2 Scheduler Performance

We profile the Herald scheduler overhead with the same ma-
chine as the testbed (§6.1) to evaluate its time consumption
and scheduling quality. In this part, we focus on the Criteo
AD dataset only.
Overhead breakdown. Through our measurement, the per-
batch scheduling overhead is 7.7 ms (16 threads) on average.
Figure 12 shows the breakdown of this scheduling overhead,
where the major overhead is caused by the scoring function,
consuming 3.2 ms (42%). 92% of the overhead, including
scoring, cache snapshots update, and communication plan
generation, are accelerated by multi-threading. Although the
worker allocation function runs in a single thread, it con-
tributes to only 0.6 ms (8%) overhead.
Scalability of adaptive LAIA. We further evaluate the adap-
tiveness of LAIA across different scales of training clusters.
We assume that the scheduling budget10 does not change
when increasing the scale of training clusters. Thereby, we
find the number of tables that LAIA can be considered during
the scoring, so that the whole scheduling time is not larger
than the scheduling budget, i.e., 18.2 ms in this case. In this ex-
periment, we use a multi-threading worker allocation function
for adaptive LAIA. We report the results of different cluster
scales, where the number of selective tables is smaller than
the total number of tables (i.e., 26) in Criteo AD dataset. The
increased transmissions are the ratio of the embedding trans-
missions incurred by adaptive LAIA to that incurred by static

10The scheduling budget increases with the scaling training clusters due to
the larger dense parameters synchronization time. Therefore, we can score
with a larger number of embedding tables in adaptive LAIA than we report.

LAIA. As shown in Figure 13, adaptive LAIA introduces less
than 1.11× transmission increase by scoring with at least 4
tables. This result indicates that Herald is scalable and adap-
tive to different scales of training clusters. Moreover, it also
reveals that Herald is resilient to the underestimation of the
scheduling budget by preserving a high scheduling quality
with a small set of selective tables.
Herald vs. brute-force search. The performance of Herald
compared with the brute-force search is shown in Appendix C
due to the space limitation.

6.3 End-to-end Training

We demonstrate that Herald accelerates end-to-end training,
improves scalability, and preserves performance superiority
even under limited cache sizes and large-scale clusters.
Training speedup. Figure 14 shows the training speedup of
Herald over HET across different workloads. We observe
that Herald can achieve 1.09×-2.11× speedup over TCP
and 1.02×-1.61× over RDMA. Specifically, we find that the
speedup of W1 is the highest among all, which accords with
the results in Figure 4 that W1 has the highest embedding
communication ratio. The above speedups are attributed to
the communication reduction of Herald in the number of em-
bedding transmissions, as explained in §6.2.1.
Scalability. The high training performance makes the dis-
tributed training system more scalable. We evaluate the scal-
ability of Herald and HET with the metric of scaling factor
defined as in [51]: TN

NT where T is the throughput of a single
worker, N is the number of workers, and TN is the overall
throughput of a cluster with N workers. Note that T in Herald

51.6

1.67

15.6

28.4

Sp
ee
du
p

0

20

40

60

W1 W2 W3 W4

Figure 17: Herald achieves tremendous
speedup compared with FAE-like static
caching.

1.6 1.48

1.02

1.53

Sp
ee
du
p

0

1

2

3

W1 W2 W3 W4

Figure 18: Herald preserves the per-
formance superiority in a large-scale
testbed.

1.6
1.4 1.39 1.41

Sp
ee

du
p

0

1

2

3

Num. of servers
1 2 3 4

Figure 19: Herald preserves the perfor-
mance superiority when increasing the
number of servers for PS.

equals that in HET, as both frameworks behave the same in
the single-worker training. We measure the throughput of a
single worker with a single GPU server, where the PS runs
on CPUs in the same server to eliminate network communi-
cation. Figure 15 shows the scaling factor of Herald and HET
in every workload. Herald improves the scaling factor from
0.42-0.60 to 0.52-0.90, which indicates that incorporating
Herald into distributed DLRM training can utilize resources
more efficiently.

Training performance under limited cache sizes. Given
the ever-expanding size of the embedding tables and the rel-
atively slow evolution of accelerator device memory, it is
likely that the ratio of in-cache embeddings becomes smaller.
We study the impact of different embedding cache sizes on
W1. The cache ratio, i.e., the ratio of the number of in-cache
embeddings to the total number of embeddings, ranges from
4% to 10%. As shown in Figure 16, Herald preserves the
performance superiority over HET and the speedup (1.97×-
2.15×) does not vary a lot across different sizes of embedding
cache. The reason is that, as discussed in §2.2, embedding
transmissions are dominated by the embedding update, and
this dominance holds across different embedding cache sizes.
Therefore, the distributed DLRM training framework still ben-
efits from reducing embedding pulls and pushes in embedding
updates even under a small embedding cache size. This ex-
periment verifies the consistent effectiveness of Herald under
limited cache sizes.

Compared with FAE (static caching). FAE [3] is quite
a different cache model from Herald and HET. First, FAE
is a static cache, i.e., the cached embeddings are predeter-
mined and fixed before training. Second, all workers in FAE
cache exactly the same embeddings, and they synchronize all
cached embeddings with all-reduce as dense parameters. We
build FAE-like static caching on top of HET. Our FAE-HET
implementation supports caching at most 1% embeddings in
each worker and training workloads with a per-worker batch
size of 128. For implementation efficiency, we change em-
bedding interactions from concatenation to sum pooling in
all workloads. As shown in Figure 17, Herald outperforms
FAE with a 1.67×-51.59× speedup. The huge improvement
mainly comes from two reasons. First, since Herald’s workers
can cache arbitrary embeddings, Herald’s overall cache size

is larger than FAE’s, thus leading to a higher cache hit rate.
Second, the embedding scheduling in Herald further improves
the efficiency of the cache usage (by reducing the number of
worker pulls and worker pushes) compared with FAE.
Multi-GPU and multi-node scenario. Lastly, we evaluate
Herald in a multi-GPU and multi-node testbed, consisting of
10 × 8-GPU servers as workers. Each worker contains 80
CPU cores, and the thread pool size is also set to 80. The
other settings remain the same as the default. At such a large
scale, Herald adopts adaptive scheduling (§4.3) to bound the
scheduling time. Figure 18 shows the results. By comparing to
HET, Herald can achieve 1.02×-1.60× speedup among four
workloads by leveraging 77%-100% of tables for scheduling.
We further evaluate the Herald performance when increasing
the number of servers for PS on the W1 workload. As shown
in Figure 19, the improvement of Herald may have a slight
decrease (achieving about 1.4× speedup) when the capability
of PS increases. The reason is that increasing the number
of servers for PS can relieve or even eliminate the network
bottleneck in the PS architecture [41].

7 Discussions

Scheduling without batch prefetching. If the streaming
dataset only provides a single batch of inputs at a time, i.e.,
no batch prefetching support, Herald will fail to generate
communication plans for the on-demand synchronizations.
In this case, Herald’s LAIA algorithm still works to provide
a cache-friendly inputs partition. Based on the optimization
breakdown (Table 2), scheduling with only LAIA can preserve
a considerable overall improvement.
Scheduling among multiple batches. If the scheduling bud-
get is sufficient or even unlimited (offline scheduling in this
case), Herald’s scheduling scope can be extended to multiple
batches to achieve a better scheduling quality.

Inputs partition. Instead of finding a locally high-scoring
allocation of a single batch as in Algorithm 1, the partition
algorithm for multiple batches should seek an allocation with
a globally high score. However, searching for such globally
high-scoring allocation is onerous, as allocation scores are
dependent on batches. Different allocation results of the front
batch may result in totally different cache snapshots, and thus
affect the allocation score of the following batch. A potential

heuristic method to reduce the exploration space is to leverage
the power of two choices [32], which considers the top-2
highest scoring allocations of a batch, explores the next batch
based on these two allocations in parallel, and finally returns
the allocation with the highest overall scoring.

Beyond preserving the same batch order when allocating
the multi-batch inputs, there exists work to reorder inputs
among training iterations for embedding transmissions sav-
ing [4]. However, the non-random ordering of training sam-
ples may increase the gradient variance during the SGD train-
ing and lead to overfitting, as the model may learn some
spurious patterns from these handcrafted sample orders [13].

Communication plan generation. In current practice, work-
ers may execute different sizes of communication plans in
an iteration. This kind of work imbalance will result in idle
workers at the synchronous barrier of the iteration. This issue
can be improved by considering multiple batches when gen-
erating the communication plan for both embedding pull and
push, as discussed in Appendix A, with additional embedding
dependency checking. For embedding pull, the worker can
prefetch an embedding if it is not trained by other workers
until the time this worker accesses it. For embedding push,
the worker can synchronize more embeddings beyond the
requirement in the next iteration. Based on this idea, we can
re-schedule communication plans to balance the communi-
cation workload among workers, and thus reduce the overall
communication time.

8 Related Work

Distributed recommendation systems. Several specialized
systems have been proposed for scalable and efficient training
upon DLRMs. Persia [28] advocates mixing the synchronous
and asynchronous mechanisms to update MLP and embed-
ding tables, respectively. However, the asynchronous scheme
is not scalable and can compromise accuracy with an increas-
ing number of workers [34]. XDL [21] proposes optimiza-
tions including hierarchical sample compression, workflow
pipeline, and zero copy. It provides systematical optimiza-
tions on the DLRM training pipeline, and can benefit from the
embedding scheduling to further optimize inter-worker/PS
communication. We acknowledge that the embedding schedul-
ing only works for data parallelism. For the system adopting a
hybrid parallelism strategy, like Neo [33], embedding schedul-
ing can provide a partial system acceleration.
Communication acceleration. There are many efforts ex-
erted to accelerate communication for deep learning training.
A line of work speeds up individual messages with efficient
collective communication design. Besides those designed for
deep neural networks [8, 35, 39, 41, 42, 45], many collective
communication approaches [11, 24, 27, 37] are proposed to
optimize the synchronization of sparse parameters. Another
line of work exploits communication scheduling [18, 20, 50],
which organizes the message transmission order of different

layers to overlap communication with computation. All the
above communication acceleration methods try to answer
"how to efficiently transmit messages". In contrast, Herald
accelerates communication by answering "which messages
should be transmitted".
Serving large embedding tables. There are two common
architectures to resolve the large memory requirement on
embedding tables. The first one applies model parallelism di-
rectly across multiple GPU workers, where each GPU stores a
shard of tables on its high-bandwidth memory (HBM) [27,44].
However, this manner is sub-optimal, as the GPU resource
is usually scarce and expensive. The second architecture is
the cache-PS architecture [52] as the focus of this paper. This
architecture leverages the skewness feature of datasets to
accelerate embedding accesses with high popularity, while
Herald further identifies the infrequency feature among those
cached embeddings. To reduce the communication between
cache and PS, existing works apply accuracy-compromising
optimizations including oversampling hot inputs (access-
ing only hot embeddings) [3], reordering training samples
among batches [4], and updating embeddings with staleness-
tolerance [31]. On the contrary, Herald optimizes the em-
bedding communication with embedding scheduling, which
can preserve the model (accuracy) consistency theoretically.
Moreover, when the accuracy is not that sensitive, Herald
can also benefit from the above philosophies to optimize the
scheduling process. Another orthogonal line of optimization
focuses on cache prefetching by scheduling the embedding
IO and the computation inside a worker [5, 15, 25].

9 Conclusion

This paper presents Herald, a runtime embedding scheduler
for efficient cache-enabled recommendation model training.
By leveraging the predictability and infrequency of embed-
ding cache accesses, Herald applies an adaptive location-
aware inputs allocation mechanism and an on-demand syn-
chronization strategy to reduce the embedding transmissions
between workers and PS during training. Extensive experi-
mental results show that Herald can significantly reduce the
embedding communication overhead and thus boost the end-
to-end recommendation model training.

Acknowledgments

We thank the anonymous NSDI reviewers and our shepherd
Mohammad Alizadeh for their constructive comments. We
thank Yilun Jin for insightful discussions, and appreciate HET
maintainers for their timely responses to our issues. This work
is supported in part by Hong Kong RGC TRS T41-603/20R,
GRF 16213621, ITF ACCESS, NSFC 62062005, Key-Area
Research and Development Program of Guangdong Province
(2021B0101400001), and the Turing AI Computing Cloud
(TACC) [46]. Kai Chen is the corresponding author.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In OSDI, 2016.

[2] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade
Nie, Carole-Jean Wu, and Kim Hazelwood. Understand-
ing training efficiency of deep learning recommendation
models at scale. In HPCA, 2021.

[3] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud,
Divya Mahajan, and Prashant J Nair. Accelerating rec-
ommendation system training by leveraging popular
choices. In VLDB, 2021.

[4] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud,
Divya Mahajan, and Prashant J Nair. Heterogeneous ac-
celeration pipeline for recommendation system training.
In arXiv, 2022.

[5] Saurabh Agarwal, Ziyi Zhang, and Shivaram Venkatara-
man. Bagpipe: Accelerating deep recommendation
model training. In arXiv, 2022.

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. In arXiv, 2015.

[7] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In DLRS,
2016.

[8] Minsik Cho, Ulrich Finkler, and David Kung. Blue-
connect: Novel hierarchical all-reduce on multi-tired
network for deep learning. In SysML, 2019.

[9] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Rec-
Sys, 2016.

[10] CriteoLabs. Criteo display ad challenge. https://www.
kaggle.com/c/criteodisplay-ad-challenge.

[11] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini,
and Amedeo Sapio. Efficient sparse collective communi-
cation and its application to accelerate distributed deep
learning. In SIGCOMM, 2021.

[12] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang.
Mini-batch stochastic approximation methods for non-
convex stochastic composite optimization. In Math.
Program., 2016.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. In MIT press, 2016.

[14] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. In arXiv,
2017.

[15] Huifeng Guo, Wei Guo, Yong Gao, Ruiming Tang, Xi-
uqiang He, and Wenzhi Liu. Scalefreectr: Mixcache-
based distributed training system for ctr models with
huge embedding table. In SIGIR, 2021.

[16] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo
Li, and Xiuqiang He. Deepfm: a factorization-machine
based neural network for ctr prediction. In arXiv, 2017.

[17] F Maxwell Harper and Joseph A Konstan. The movie-
lens datasets: History and context. In TIIS, 2015.

[18] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy
Campbell. Tictac: Accelerating distributed deep learn-
ing with communication scheduling. In MLSys, 2019.

[19] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,
Xia Hu, and Tat-Seng Chua. Neural collaborative filter-
ing. In WWW, 2017.

[20] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra
Fedorova, and Gennady Pekhimenko. Priority-based
parameter propagation for distributed dnn training. In
MLSys, 2019.

[21] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui
Zhou, Yang Zheng, Sui Huang, Xinyang Guo, Dongyue
Wang, Yue Song, et al. Xdl: an industrial deep learning
framework for high-dimensional sparse data. In DLP-
KDD, 2019.

[22] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed dnn training in heterogeneous
gpu/cpu clusters. In OSDI, 2020.

[23] Kaggle. Avazu mobile ads ctr. https://www.kaggle.
com/c/avazu-ctr-prediction.

[24] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo
Cho, Eunji Jeong, Hyeonmin Ha, Sanha Lee, Joo Seong
Jeong, and Byung-Gon Chun. Parallax: Sparsity-aware
data parallel training of deep neural networks. In Eu-
roSys, 2019.

[25] Youngeun Kwon and Minsoo Rhu. Training personal-
ized recommendation systems from (gpu) scratch: look
forward not backwards. In ISCA, 2022.

https://www.kaggle.com/c/criteodisplay-ad-challenge
https://www.kaggle.com/c/criteodisplay-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction

[26] Mu Li, David G Andersen, Alexander J Smola, and Kai
Yu. Communication efficient distributed machine learn-
ing with the parameter server. In NeurIPS, 2014.

[27] Shengwei Li, Zhiquan Lai, Dongsheng Li, Yiming
Zhang, Xiangyu Ye, and Yabo Duan. Embrace: Ac-
celerating sparse communication for distributed training
of deep neural networks. In ICPP, 2022.

[28] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong
Wang, Yongjun He, Honghuan Wu, Lei Sun, Haodong
Lyu, Chengjun Liu, Xing Dong, et al. Persia: An
open, hybrid system scaling deep learning-based rec-
ommenders up to 100 trillion parameters. In SIGKDD,
2022.

[29] Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang,
Biao Zhang, Da Tang, Bolin Zhu, Yijie Zhu, Peng Wu,
Ke Wang, et al. Monolith: real time recommendation
system with collisionless embedding table. In arXiv,
2022.

[30] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao,
Shin-Yeh Tsai, Carole-Jean Wu, and Mark Hempstead.
Understanding capacity-driven scale-out neural recom-
mendation inference. In ISPASS, 2021.

[31] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie,
Zhi Yang, Yangyu Tao, and Bin Cui. Het: Scaling out
huge embedding model training via cache-enabled dis-
tributed framework. In VLDB, 2021.

[32] Michael Mitzenmacher. The power of two choices in
randomized load balancing. In TPDS, 2001.

[33] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. Software-
hardware co-design for fast and scalable training of deep
learning recommendation models. In ISCA, 2022.

[34] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srini-
vas Sridharan, Xiaodong Wang, Whitney Zhao, Serhat
Yilmaz, Changkyu Kim, Hector Yuen, Mustafa Ozdal,
et al. Deep learning training in facebook data centers:
Design of scale-up and scale-out systems. In arXiv,
2020.

[35] NVIDIA. Collective communications library (nccl).
https://developer.nvidia.com/nccl.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

[37] Cèdric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh,
Dan Alistarh, and Torsten Hoefler. Sparcml: High-
performance sparse communication for machine learn-
ing. In SC, 2019.

[38] Haidong Rong, Yangzihao Wang, Feihu Zhou, Junjie
Zhai, Haiyang Wu, Rui Lan, Fan Li, Han Zhang, Yuekui
Yang, Zhenyu Guo, et al. Distributed equivalent substi-
tution training for large-scale recommender systems. In
SIGIR, 2020.

[39] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. In
arXiv, 2018.

[40] Marcelo Tallis and Pranjul Yadav. Reacting to variations
in product demand: An application for conversion rate
(cr) prediction in sponsored search. In arXiv, 2018.

[41] Xinchen Wan, Hong Zhang, Hao Wang, Shuihai Hu,
Junxue Zhang, and Kai Chen. Rat - resilient allreduce
tree for distributed machine learning. In APNet, 2020.

[42] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan,
Jiacheng Xia, Gaoxiong Zeng, Wei Bai, Junchen Jiang,
Yong Wang, and Kai Chen. Towards domain-specific
network transport for distributed dnn training. In NSDI,
2024.

[43] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang.
Deep & cross network for ad click predictions. In AD-
KDD, 2017.

[44] Zehuan Wang, Yingcan Wei, Minseok Lee, Matthias
Langer, Fan Yu, Jie Liu, Shijie Liu, Daniel G Abel,
Xu Guo, Jianbing Dong, et al. Merlin hugectr: Gpu-
accelerated recommender system training and inference.
In RecSys, 2022.

[45] Jiacheng Xia, Gaoxiong Zeng, Junxue Zhang, Weiyan
Wang, Wei Bai, Junchen Jiang, and Kai Chen. Rethink-
ing transport layer design for distributed machine learn-
ing. In APNet, 2019.

[46] Kaiqiang Xu, Xinchen Wan, Hao Wang, Zhenghang
Ren, Xudong Liao, Decang Sun, Chaoliang Zeng, and
Kai Chen. Tacc: A full-stack cloud computing infras-
tructure for machine learning tasks. arXiv preprint
arXiv:2110.01556, 2021.

[47] Xinyang Yi, Yi-Fan Chen, Sukriti Ramesh, Vinu Ra-
jashekhar, Lichan Hong, Noah Fiedel, Nandini Seshadri,
Lukasz Heldt, Xiang Wu, and Ed H Chi. Factorized deep
retrieval and distributed tensorflow serving. In MLSys,
2018.

[48] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing
Liu. Tt-rec: Tensor train compression for deep learning
recommendation models. In MLSys, 2021.

https://developer.nvidia.com/nccl

[49] Chaoliang Zeng, Xiaodian Cheng, Han Tian, Hao Wang,
and Kai Chen. Herald: An embedding scheduler for
distributed embedding model training. In APNet, 2022.

[50] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong
Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao
Xie, and Eric P Xing. Poseidon: An efficient communi-
cation architecture for distributed deep learning on gpu
clusters. In ATC, 2017.

[51] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang,
Raman Arora, and Xin Jin. Is network the bottleneck of
distributed training? In NetAI, 2020.

[52] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Rui-
quan Ding, Mingming Sun, and Ping Li. Distributed
hierarchical gpu parameter server for massive scale deep
learning ads systems. In MLSys, 2020.

[53] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian,
Chang Zhou, Xiaoqiang Zhu, and Kun Gai. Deep inter-
est evolution network for click-through rate prediction.
In AAAI, 2019.

[54] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and
Kun Gai. Deep interest network for click-through rate
prediction. In SIGKDD, 2018.

A The Problem Definition of Embedding
Scheduling

Prerequisites. Considering a distributed learning system
with n workers and a per-worker batch size of m, the overall
batch size is n×m. The embedding table length, i.e., the total
number of embeddings in the table, is d. The total number of
iterations is T . The goal of embedding scheduling is to mini-
mize the communication overhead, specifically the operation
time of push and pull operations between workers and the PS.

For modeling simplicity, we delay the operation of the em-
bedding push to the next iteration without violating the BSP
training. In this model, an iteration proceeds with the follow-
ing operations: retrieving the batch inputs, pushing the embed-
dings, pulling the embeddings, DLRM forward propagation,
DLRM backward propagation, and dense parameter synchro-
nization. There exists a synchronous barrier between two
operations. Finally, we can model the problem as a Markov
Decision Process (MDP) with the following components.
State space S . An iteration can be described by a state
including the training batch of the current iteration and the
current state of embeddings. The training batch is related
to the dataset and the current iteration number. The state of
embeddings S is a matrix with d rows and n+ 1 columns,
where the value of si, j is 1 if the j-th worker (j = n+1 refers
to the PS) has the latest version of the i-th embedding, a
value between 0 to 1 if the j-th worker has a non-aggregated
gradient (a partially aggregated gradient for PS) of the i-th
embedding, and 0 for the rest.
Action space A . The action space is defined by three action
matrices: a sample assignment matrix P, an embedding push
matrix Q, and an embedding pull matrix R. State actions are
enforced based on these three matrices sequentially.

P is a matrix with n×m rows and n columns, where the
value of pi, j is 1 if the i-th sample is assigned to the j-th
worker, and 0 otherwise. Each sample can only be assigned to
one worker, i.e., ∑ j pi, j = 1. The sample assignment matrix P
can transfer to the embedding assignment matrix U according
to the accessing embeddings of each sample. The embedding
assignment matrix U is a matrix with d rows and n columns,
where the value of ui, j is 1 if the i-th embedding is assigned
to the j-th worker, and 0 otherwise.

Q is a matrix with d rows and n columns, where the value
of qi, j is 1 if the j-th worker pushes the i-th embedding to the
PS, and 0 otherwise. Q should preserve the availability of the
latest version of embeddings at PS if this embedding is not
available by its assigning workers:

qi, j = 1, if 0 < si, j < 1 and Σ j′∈nui, j′ >= 1
or si, j = 1 and si,n+1 = 0 and Σ j′∈n, j′ ̸= jui, j′ >= 1

R is a matrix with d rows and n columns, where the value
of ri, j is 1 if the j-th worker pulls i-th embedding from the PS,
and 0 otherwise. R is subject to two rules that ① the worker

should pull the assigning embedding if it does not maintain
the latest version of this embedding, and ② the PS has the
latest version of the embedding when there is a pull request:

① ri, j = 1, if ui, j = 1 and si, j ̸= 1
② ri, j = 1 ⇒ si,n+1 = 1

There is an implicit assumption that the PS has the latest
version of the i-th embedding when performing rule ①. This
assumption is maintained by Q.
State transition. The transition of the training batch is trivial.
In terms of the state of embeddings, the transition is as follows:
for j ∈ [1,n] (workers),

s′i, j =


1

Σ j′∈nui, j′
, if ui, j = 1

0,
if ui, j = 0 and ∃ j′ such that ui, j′ = 1
or Σui, j = 0 and qi, j = 1 and si, j ̸= 1

si, j, otherwise

for j = n+1 (PS),

s′i,n+1 =

{
0, if Σ j′∈nui, j′ >= 1
min(1,si,n+1 +Σ∀ j′,qi, j′=1si, j′), otherwise

Reward function R . The reward is the negative of the com-
munication latency. We assume the latency to push or pull an
embedding remains the same. Since we preserve a strict order
between the operations of push and pull, and the latency of
these two operations depends on the worker with the largest
workload, we define the reward function as follows:

R (s,a) =−[max
j

d

∑
i=1

qi, j +max
j

d

∑
i=1

ri, j]

Objective. Based on the above-defined MDP, our objec-
tive is to find a policy π(S) → A that maps states to ac-
tions, which maximizes the expected cumulative reward
E
[
∑

T
t=0 R (St ,At)

]
.

A conventional solution to solve the above problem is
dynamic programming. However, it does not work well in
practice given the curse of dimensionality (the number of
iterations in this problem), not to mention the fact that some-
times it is difficult to retrieve the entire dataset in advance
from the streaming data and hard to predict the number of
training iterations. Herald focuses on single batch schedul-
ing, i.e., finding a quality action for the current state to get a
high reward. Therefore, both the pull operation and the push
operation perform on demand, and existing cache systems
(like HET [31]) work with on-demand embedding pulls by
design. Moreover, delaying the push operation after retrieving
the batch inputs may be different from the practice, where the
embedding push operation happens during the synchroniza-
tion of the previous iteration. According to our analysis, the
push action (Q) is mainly affected by the sample assignment.
Therefore, in practice, we can decide on the push operation
with an early sample assignment for the next iteration.

Herald scheduling quality
Herald scheduling time
Brute-force search scheduling time

Sc
he

du
lin

g
qu

al
ity

0

0.5

1.0 Scheduling tim
e (m

s)1

102

104

Num. of workers
2 3 4 5 6 7 8 9 10 11 12

Figure 20: Herald vs. brute-force search (scheduling time is
in log scale).

B Point-to-point Embedding Synchronization
In this paper, we follow the same distributed cache model as
HET’s [31], where each worker only communicates with PS.
In this cache model, embedding synchronization requires at
least two steps, one worker push and one worker pull. We
can reduce the synchronization path to one step by direct
P2P synchronization between two workers. Moreover, P2P
embedding synchronization can eliminate the potential net-
work bottleneck caused by the PS architecture [41]. Herald
can support P2P embedding synchronization by distinguish-
ing synchronization targets during the communication plan
generations. These targets finally become a receiving commu-
nication plan to indicate which embeddings would be received
in an iteration for each worker.

C Herald vs. Brute-force Scheduling
To evaluate the effectiveness of Herald scheduler, we also im-
plement a scheduler that leverages brute-force search as the
baseline. The brute-force search scheduler explores all possi-
ble allocations and returns an allocation that incurs minimal
embedding transmissions. Since the search space expands ex-
ponentially with the number of workers and per-worker batch
size, we restrict the per-worker batch size to 1. We define the
scheduling quality of Herald as the ratio of the number of
embedding transmissions incurred by the brute-force search
scheduler to that incurred by Herald.

We measure the scheduling quality and the scheduling time
across different numbers of workers and report their average
values for 90 iterations after 10 warm-ups used to fill the
cache. For easy parallelism, the thread pool size is identical to
the number of workers for both schedulers. Figure 20 demon-
strates that Herald can achieve a scheduling quality from 0.45
to 0.57, indicating that there is still room to exploit embedding
scheduling in the future. In terms of scheduling time, Herald
consistently preserves a low scheduling overhead (< 0.7 ms).
Meanwhile, the scheduling time of the brute-force search
scheduler increases rapidly, consuming up to a few seconds
when there are more than 10 workers in this tiny search space.
This result reveals that the brute-force search scheduler is
impractical for large-scale DLRM training.

	Introduction
	Background & Motivation
	Deep Learning Recommendation
	Embedding Communication Matters

	Embedding Scheduling
	Rationales
	Opportunities
	Model Consistency Analysis

	Design
	Challenges
	Overview
	Location-aware Inputs Allocation
	Communication Plan Generation

	Implementation
	Evaluation
	Evaluation Settings
	Micro-benchmarks
	Cache Performance
	Scheduler Performance

	End-to-end Training

	Discussions
	Related Work
	Conclusion
	The Problem Definition of Embedding Scheduling
	Point-to-point Embedding Synchronization
	Herald vs. Brute-force Scheduling

