N)
Py QCluster: Clustering Packets for Flow Scheduling

Jizhou Lit

Peking University, China

Tong Yang '+

Peking University, China

Jie Jiang®

Peking University, China

Hao Wang§

Hong Kong University of Science
and Technology, Hong Kong

ABSTRACT

Flow scheduling is crucial in data centers, as it directly influences
user experience of applications. According to different assump-
tions and design goals, there are four typical flow scheduling prob-
lems/solutions: SRPT, LAS, Fair Queueing, and Deadline-Aware
scheduling. When implementing these solutions in commodity
switches with limited number of queues, they need to set static
parameters by measuring traffic in advance, while optimal param-
eters vary across time and space. This paper proposes a generic
framework, namely QCluster, to adapt all scheduling problems for
limited number of queues. The key idea of QCluster is to cluster
packets with similar weights/properties into the same queue. QClus-
ter is implemented in Tofino switches, and can cluster packets at
a speed of 3.2 Tbps. To the best of our knowledge, QCluster is the
fastest clustering algorithm. Experimental results in testbed with
programmable switches and ns-2 show that QCluster reduces the
average flow completion time (FCT) for short flows up to 56.6%, and
reduces the overall average FCT up to 21.7% over state-of-the-art.
All the source code in ns-2 is available in Github [45].

CCS CONCEPTS

» Networks — Programmable networks.

KEYWORDS
Datacenter Networks, Flow Scheduling, Queue Clustering

ACM Reference Format:

Tong Yang, Jizhou Li, Yikai Zhao, Kaicheng Yang, Hao Wang, Jie Jiang, Yinda
Zhang, and Nicholas Zhang. 2022. QCluster: Clustering Packets for Flow
Scheduling. In Proceedings of the ACM Web Conference 2022 (WWW °22),
April 25-29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3485447.3511980

School of Computer Science, and National Engineering Laboratory for Big Data
Analysis Technology and Application, Peking University, China.

iPeng Cheng Laboratory, Shenzhen, China.

SDepartment of Computer Science and Engineering, Hong Kong University of Science
and Technology, Hong Kong.

THuawei, Theory Lab, China.

This work is supported by Key-Area Research and Development Program of Guangdong
Province 2020B0101390001, National Natural Science Foundation of China (NSFC) (No.
U20A20179).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WWW 22, April 25-29, 2022, Virtual Event, Lyon, France.

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. .. $15.00
https://doi.org/10.1145/3485447.3511980

1752

Yikai Zhao

Peking University, China

Kaicheng Yang

Peking University, China

Yinda Zhang’

Peking University, China

Nicholas Zhang1

Huawei, China

1 INTRODUCTION
1.1 Background and Motivation

Given some flows/packets in a node, flow scheduling is to decide
the forwarding sequences of packets for some optimization goals,
such as flow completion time, fairness, or meeting deadlines. Flow
scheduling has been a hot topic in data centers ([8, 10, 14, 16, 30,
32, 36-39, 42, 55, 62]), because it directly determines bandwidth
usage, latency, and Quality of Service of applications.

According to different optimization goals and assumptions, there
are typically four kinds of scheduling problems/solutions: SRPT
(Shortest Remaining Processing Time first, e.g., pFabric [8]), LAS
(Least Attained Service, e.g., PIAS [10], Auto [14]), Fair Queueing
(e.g., Nagle [41], BR[18], AFQ [48]), and Deadline-Aware Schedul-
ing (e.g., pFabric [8] with Earliest-Deadline-First (pFabric-EDF), D3
[61], PDQ [26] and Karuna [12]). These works have made great
contributions, and can achieve near-optimal or excellent perfor-
mance when there are a great number of queues in each egress
port. For example, pFabric [8] achieving near optimal performance,
assumes there are infinite number of queues. Another example is
Fair Queueing. The earlier work, Nagle [41], assigns each flow one
queue to achieve the theoretical Fair Queueing, requiring a great
many queues. Instead, Bit by bit round robin [18] uses one pre-
emptive queue to conduct the scheduling. However, BR is still far
from practice, and the preemptive queue can only be approximately
implemented with multiple queues, which is done by approximate
Fair Queueing (AFQ) [48]. However, AFQ needs to rotate the queue
priorities, which has not been achieved in current switches.

The number of queues in commodity switches is very limited,
e.g., k = 8 queues, and therefore the above works must be adapted
to a limited queue version for practical use. To adapt for k queues,
one commonly used approach is to measure traffic in advance.
Specifically, one first builds a measurement system to collect traffic
from switches or end hosts, analyzes the statistics, and makes many
tests to find appropriate parameters. However, when traffic changes
and mismatches the parameters, the performance could degrade a
lot. For example, the authors of PIAS show that when thresholds
mismatch traffic, the flow completion time (FCT) could be degraded
by 38% [10, 14]; For another example, when implementing pFabric
in k = 8 queues, the FCT of pFabric could be degraded by 30%
[8, 14]. However, the optimal parameters often vary across time
and space, and the traffic distribution in network changes frequently
and quickly. Measuring traffic in advance cannot adapt to the quick
change of traffic. Therefore, it is desirable but challenging to adapt
existing solutions for limited number of queues without measuring
in advance. The design goal is to devise a framework to address
this challenge for all existing scheduling problems.

https://doi.org/10.1145/3485447.3511980
https://doi.org/10.1145/3485447.3511980
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3485447.3511980&domain=pdf&date_stamp=2022-04-25

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France.

1.2 Our Solution

Our insight is that adapting existing solutions for k queues is ac-
tually a clustering problem: clustering packets into queues. The k
queues in current commodity switches are first-in-first-out (FIFO).
If packets with drastically different weights or properties are placed
into one queue, the performance will be poor because of FIFO. For
example, if a small flow and a large flow are placed into the same
queue, the small flow will be blocked by the large flow and the
overall FCT will be large. For another example, if a common flow
and a flow with a deadline are placed in one queue, the deadline
may be missed. Therefore, our insight is that packets in the same
queue should have similar weights/properties, and this is actually
a clustering problem, and we name it the Queue Clustering prob-
lem.

Queue Clustering has the following two requirements that exist-
ing clustering problems often do not have. 1) The clustering speed
needs to catch up with the line rate, e.g., 3.2 Tbps, and no exist-
ing clustering algorithm can achieve this speed; 2) Packet disorder
should be avoided. Due to the above special requirements, exist-
ing clustering algorithms [34, 35, 46] cannot be directly used, and
this paper proposes the QCluster to cluster packets with similar
weights/priorities into the same queue.

QCluster uses packet weight and property as features. For flows
with special properties, such as deadline or time sensitiveness, they
should be in different clusters/queues from other flows. For flows
with the same property, we cluster them according to the packet
weight. Inspired by k-means [34], we maintain the average packet
weight for each queue, and call it queue weight. Given an incoming
packet, we compare the packet weight with the k queue weights
to choose a queue. The packet weight is recorded and updated in
the Scheduling Count-min sketch (see details in Section 3.2), which
also records timestamp and last queue ID. For different scheduling
problems, packet weight has different definitions, and different de-
queuing policy should be chosen. For LAS, we define packet weight
as the number of bytes sent, and use strict priority to dequeue
packets. We also propose an adaptive method (see detail in §3.3)
to make high-priority queue have fewer packets so that the proba-
bility that small flows are blocked by large flows will be reduced.
For Fair Queueing, we also define packet weight as the number of
bytes sent, but use round robin to dequeue packets. For SRPT and
Deadline-Aware, we implement them in ns-2, but not in our testbed
because these two policies need to know the remaining flow size
that the current TCP protocol does not support.

During the clustering process, the latter packets of a flow could be
placed into a higher-priority queue, and thus packet disorder could
happen. Existing solutions (e.g., pFabric) also have this problem. To
avoid packet disorder, we propose the PDA algorithm. Our key idea
is that given an incoming packet ap o of flow a, only if all previous
packets of a are not in any queue of this switch, we can place an oy
to any queue and packet disorder will not happen; Otherwise, we
need to schedule this packet according to the state of the previous
packet and the scheduling policy.

Key Contributions:
1) We propose the QCluster to adapt all existing scheduling algo-
rithms for limited number of queues (§3). In QCluster, we propose

1753

Tong Yang, Jizhou Li, Yikai Zhao, Kaicheng Yang, Hao Wang, Jie Jiang, Yinda Zhang, and Nicholas Zhang

the Scheduling Count-Min sketch to record all necessary informa-
tion, and propose the PDA algorithm to avoid packet disorder.

2) We apply QCluster to four typical scheduling policies (SRPT, LAS,
Fair Queueing, and Deadline-Aware Scheduling) as case studies.
3) We implement QCluster in Tofino switch and build a testbed (§5).
We also conduct large-scale simulations using ns-2.

4) Extensive experimental results on a testbed and simulators show
that QCluster can well adapt existing scheduling solutions to limited
number of queues, achieving similar or better performance (§6).

2 BACKGROUND AND RELATED WORK

Due to the significance of flow scheduling, there are a great many
works in the literature, and we introduce them briefly.

1) SRPT: SRPT (shortest remaining processing time first) assumes
that the remaining size of each flow is known, and lets the flow
with the smallest remaining size go first to minimize FCT. Typical
solutions include pFabric [8], Homa [39], and more [21]. In pFabric
[8], the smaller the remaining flow size is, the higher priority a
packet gets. And for dequeuing, the switch should find the earliest
packet from the flow with the highest priority. However, this is
hard to be deployed in commodity switches. A recent work, Homa
[39], also belongs to this kind.

2) LAS: LAS (least attained service first) lets the flow with the
smallest bytes sent go first. Typical solutions include PIAS [10] and
AuTO [14]. PIAS [10] can achieve small FCT by carefully setting the
thresholds for each queue according to the flow size distribution
and network load. Using the handcrafted thresholds for fixed distri-
bution, PIAS achieves very small FCT. However, if the distribution
changes, the FCT will drop significantly [14].

3) Fair Queueing: Fair Queueing was first introduced by Nagle
[41], which owns some good characteristics compared to FCFS (Fisrt
Come First Serve). To achieve per-flow fairness, all active flows
in the switch should have the same priority to use the bandwidth.
Typical solutions include Nagle [41], RFQ [11], BR(bit-by-bit round
robin) [18], Gearbox [3], and AFQ [43].

4) Deadline-Aware Scheduling: In data centers, some flows could
have deadlines, and are called deadline flows. The goal of Deadline-
Aware scheduling is to meet the deadlines of deadline flows first,
and then minimize the FCT of non-deadline flows. Typical solutions
include pFabric-EDF [8], D3 [61], PDQ [26], D2TCP [58], MCP [13]
and Karuna [12]. pFabric [8] with Earliest-Deadline-First (pFabric-
EDF) assigns priorities of packets for the deadline flows to be the
flow’s deadline. And it assigns priorities of packets for the non-
deadline flows based on remaining flow size. D> [61] proposes a
deadline-aware control protocol, which uses explicit rate control to
apportion bandwidth to meet the deadlines of flows.

5) Recent Hardware Solutions: Recent works also leverage the
emerging new hardware in networking. [5, 15, 27, 31, 43, 44, 49, 51—
54, 56]. PIFO [53] designs a priority queue. In this design, each
incoming packet can be enqueued into an arbitrary position of the
queues, while PIFO dequeues packets from the head. PIEO [49] is a
generalization of the PIFO primitive allowing dequeue from arbi-
trary positions. SP-PIFO [5] uses strict-priority queues to achieve
similar behavior of an ideal PIFO. PIFO is indeed very flexible and
generic to a great many traffic optimization problems. However,
PIFO cannot implement pFabric when dealing with starvation.

QCluster: Clustering Packets for Flow Scheduling

3 THE QCLUSTER FRAMEWORK

In this section, we first propose a generic framework, QCluster, to
address the queue clustering problem. Second, we show how to use
the SCM sketch to record and update flow information. Third, we
show how to control cluster sizes. Last, we propose an algorithm
to avoid packet disorder.

3.1 The QCluster Framework

Queue Clustering: Given a switch with k queues per port, there
are incoming packets belonging to different flows. The problem
is how to cluster packets with similar weights/properties into the
same queue without measuring traffic in advance. Note that the
queue clustering problem has four requirements that most existing
clustering problems do not have (see Section 1.2).

The QCluster Framework: Our framework is inspired by k-
means, and can be applied to all flow scheduling problems. QCluster
works as follows (see Figure 1). 1) For packets with the same special
property, e.g., with a deadline, or time-sensitive, QCluster clusters
them into queues different from other flows; for flows with the same
property, QCluster clusters them according to the packet weight.
2) Packet weight has different definitions for different scheduling
problems. For example, the packet weight in LAS is the number
of bytes sent. Packet weight is recorded and updated by the SCM
sketch which is detailed in Section 3.2. QCluster maintains the av-
erage packet weight for each queue, namely queue weight. 3) When
choosing the queue, we consider three factors: distance, cluster size,
and packet disorder. Given an incoming packet, we compare the
packet weight with the k queue weights to choose two adjacent
queues, and then choose one of them according to our requirement
for cluster size. For example, for Fair Queueing, we need to let all
clusters have the same size; for LAS, we need to let higher priority
queues have fewer packets. The reason behind is shown in Section
3.3. Section 3.4 shows how to avoid packet disorder. 4) For different
scheduling problems, we need to choose the corresponding dequeu-
ing policy. For example, we should choose strict priority [10] for
minimizing FCT, and weighted round-robin [60] for fairness.

Query/update weight Choose queue Dequeuing Policy
packets SEMISKeEch 7 Bl M Strict priority
TS —> v Cluster size O Round-Robin (RR)

O Weighted RR

v Packet disorder O Open one queue

Figure 1: The QCluster framework.
3.2 The Scheduling Count-Min Sketch

In QCluster, given an incoming packet a0,y with flow ID a, we
need to know three kinds of information: 1) The number of bytes
sent; 2) the arriving time of the last packet of the incoming flow; 3)
the queue that the last packet was sent into. To record these kinds
of information with extremely limited memory in switches, we
propose an enhanced CM sketch [17], namely the Scheduling Count-
Min sketch (SCM). Compared to CM, SCM has three additional
functions: 1) SCM can automatically delete the information of aged
flows; 2) SCM records the queue ID of the previous packet of each
flow goes; 3) SCM can distinguish messages! and Flowlets.

In data centers, applications often establish persistent TCP connections. Commu-
nications can reuse the opened connections. Such communications are known as
“messages”. Packets that belong to different messages will be scheduled individually.

1754

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France.

<time, counter, queue ID>

v ¥

Te b ‘
> |
ha()) m
—
f2 ||
—
time=Te6 S ha()
Query f2 +1
Insert f2 Te

Figure 2: The SCIVf.lTo query th/::2 packet with ﬂov& ip f2, we
get d hashed buckets, and then report the oldest time T, and
the smallest counter 6. To insert a packet of flow f,, for each
hashed buckets, we update its timestamp to the current time
Ts and increment the counter by 1.

Data Structure (Figure 2): The SCM sketch consists of d arrays,
Ay, - -+, Ay. Each array has [buckets. Each bucket has three fields:
a timestamp recording the last access time, a counter recording the
number of bytes (or packets), and a queue ID recording the queue
that the last packet hashed into this bucket was sent into. Each
array is associated with a hash function h;(.).
Insert: To insert a packet a0,y with flow ID a, we calculate d hash
functions, and get d hashed buckets. We first define a threshold
ATmessage- Suppose that the time now is ¢p0v. For each of the
d hashed buckets, if its timestamp fp,cke; is older than t,e., —
ATmessage, We consider the incoming packet as the first packet of
a new message. We clear this bucket, set the counter field to the
number of bytes in the packet, and set the timestamp field to the
current time. Otherwise, we add the number of bytes in the packet
to the counter, and update timestamp to the current time.
Query: To query a packet ano, with flow ID a, similarly, we get
the d hashed buckets. We choose the smallest size w(an o) as the
weight of packet a and the oldest timestamp #(a) as its timestamp.
If £(a) is older than t,oy — ATmessage, it means that no packets
arrived in recent ATyessage time.

Distinguishing flowlets is very similar to distinguishing message.
The recorded queue ID is only used for packet disorder avoidance.
The insertion and query complexity of the SCM sketch are O(1).

3.3 Adjusting Cluster Size

QCluster clusters all the packets into k clusters, and each cluster
corresponds to a queue. The mean of each cluster corresponds to
the queue weight. Let g; be the i th queue, and let m; be the queue
weight of ¢;. Given an incoming packet with weight w(anow), we
compare w(anow) with mq, -+, my. Suppose m; < w(anow) <
miy1, it means we should choose g; or g;4+1. Different from tradi-
tional approaches which choose the nearest one, we may choose
differently in order to control the cluster size. We have two strate-
gies: Same-Cluster-Size and Proportional-Cluster-Size.
Same-Cluster-Size. For Fair Queueing, we need to let all clusters
have the similar size. In practice, when all clusters have the similar
size, the queue weight will be inversely proportional to the number
of flows in the queue. In dequeuing, we need to perform weighted
round robin, and the weight is inversely proportional to the queue
weight. We propose a technique, namely Adaptive Threshold. We
define the threshold between q; and g;+1 as: thres; = mj*f+mjq1%*
(1 - f), where § = (=—2.—) and p; is the number of packets in

Pitpi+1
qi- When increasing/decreasing o, the number of packets in ¢; will

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France.

increase/decrease. In implementation, a will increase or decrease
automatically according to the cluster size.
Proportional-Cluster-Size. For policies of LAS, SRTP, Deadline-
Aware, we need to let the size of each cluster be proportional to
the queue weight. It is well known that a large number of flows
only contain a small number of packets [33, 63]. If we still let all
clusters have the same size, small flows will be blocked by large
flows in the first queue. Therefore, Proportional-Cluster-Size can
reduce FCT for small flows. Similarly, we can also use the above
adaptive-threshold technique. The only difference is that we need to
change p; to f:l—’l We also try three other methods (arithmetic mean,
geometric mean, harmonic mean) to achieve similar performance.
According to our experimental results (see also Fgure 10(a)), we
recommend using adaptive-threshold or geometric mean.

3.4 Packet Disorder Avoidance

When deployed in switches, QCluster will automatically adjust
queue thresholds across time and space. On the one hand, dynamic
thresholds can achieve better performance; on the other hand, latter
packets could be sent to higher-priority queues while the former
packets of the same flow are still in a congested low-priority queue,
thus packet disorder may happen. While existing solutions [6, 22,
23, 25, 29, 30] can significantly reduce the probability of packet
disorder, we aim to avoid disorder.

We propose an algorithm named Packet Disorder Avoidance
(PDA). In the PDA algorithm, we need to know whether the previous
packet of the current flow is in the switch, which currently cannot
be implemented in commodity switches, and thus we use the SCM
sketch and Flowlet for approximate implementation. Flowlet is first
proposed by Erico Vanini et al. [59], and we change the definition
a little: given an incoming packet apow with flow ID g, if all the
packets in all queues do not belong to flow a, we consider ano. as
the beginning of a Flowlet. In this case, the last packet a;,; of flow
a has already been sent to the next-hop switches, and a0 can go
to any queue. In other words, different Flowlets can be scheduled
individually and packet disorder will not happen.

The SCM sketch reports the last arriving time of flow a. If the
last packet of flow a was sent to a queue more than ATgjgier
ago, we consider apow the first packet of a new Flowlet. If apow
is not the first packet of a new Flowlet, we query the SCM sketch
to get which queue the previous packet stays. PDA works slightly
differently for LAS/SRPT/Deadline-Aware and Fair Queueing. For
LAS/SRPT/Deadline-Aware, given an incoming packet a, oy of flow
a, if apow is not the first packet of a Flowlet, and the previous
packet of flow a is in queue g;, we do not allow apow to go to any
higher-priority queue than g;; Otherwise, we can choose the queue
according to the clustering algorithm, and packet disorder will not
happen. For Fair Queueing, if the previous packet of flow a is still
in one queue (g;), we do not allow ap. to change the queue, i.e.,
anow can only go to g;; Otherwise, we choose the queue according
to the clustering algorithm.

4 APPLICATIONS

We have applied QCluster to four scheduling problems: SRPT, LAS,
Fair Queueing, and Deadline-Aware scheduling. This section also
shows how to apply QCluster to other 6 flow scheduling problems.
We list all the scheduling problems and applications in Table 1.

1755

Tong Yang, Jizhou Li, Yikai Zhao, Kaicheng Yang, Hao Wang, Jie Jiang, Yinda Zhang, and Nicholas Zhang

When applying QCluster to different scheduling problems, the
differences lie in the following aspects:

1) Strategy: The strategies for scheduling flows. If there is no
special property, most scheduling problems let the packet with the
smallest weight go first.

2) Special property: Special requirements that the algorithms
must meet. For example, for Deadline-Aware Scheduling, deadline
flows must complete before their deadlines; for TSN flows [2], they
have the highest priority when they arrive at a switch. Flows with
special property are clustered into high-priority queues, and the
other flows are clustered into low-priority queues. When all high-
priority queues have no packet, we can dequeue packets from low-
priority queues using strict priority or round robin.

3) Packet weight: The packet weight for scheduling. Packet weight
can be the number of bytes already sent, total flow size, or the re-
maining flow size. Hybrid means for flows without special property,
the weight is different for SRPT, LAS, Fair Queueing, etc.

4) PDA (in a flowlet): The requirements for packet disorder avoid-
ance. For Fair Queueing, we do not allow the incoming packet to
change its egress queue in a flowlet. For other scheduling policies,
we do not allow the incoming packet to go to a queue with a higher
priority than the previous packets in a flowlet.

5) Dequeuing policy: Most scheduling problems use strict priority.
Fair Queueing uses weighted round robin. Weighted sharing is
proposed by Aalo [16].

In practice, applications may need hybrid policies, as shown in
the end of Table 1. As QCluster can implement all basic scheduling
policies, and thus can also be adapted for hybrid scheduling scenar-
ios. For example, there are many deadline flows, and users may also
want to maximize fairness for deadline flows. In this case, we can
cluster deadline flows into the first several queues, and dequeue
with weighted round robin.

5 TESTBED AND IMPLEMENTATIONS

We build a testbed to evaluate QCluster, and deploy it in a Tofino
switch. In our testbed, we focus on LAS and Fair Queueing. For
other two policies, we show the large-scale simulations in ns-2.

5.1 Testbed Setup

Our testbed consists of 7 servers and an Edgecore Wedge 100BF-
32X switch (with Tofino ASIC). We use another 1000 Mbps switch
to manage the servers and the Tofino switch. Each server runs
Ubuntu 16.04-64bit with Linux kernel 4.13, and is connected to the
Tofino switch via a Mellanox ConnectX-3 40GbE NIC. We are able
to achieve about 37Gbit/s throughput between each pair of servers.
To improve the FCT, we set the RTO-min in Linux kernel to 10ms. In
the switch, we use the per-port ECN marking, and set the marking
threshold to 300KBytes (about 200 packets).

5.2 Implementation in P4

We have fully implemented a P4 version of QCluster with 500 lines
of P4 code, including all the registers and metadata for QCluster in
the data plane, and compiled it to the Tofino switch [57].

Using Registers and SALUs. In the Tofino switch, we use registers
to implement the SCM sketch, where registers are a kind of stateful
objects. We leverage the SALU (Stateful ALU) in each stage to look
up and update the entries in the registers. In the current Tofino
switches, a SALU can at most update a pair of up to 32-bit registers,

QCluster: Clustering Packets for Flow Scheduling

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France.

Table 1: Applying QCluster to Scheduling Algorithms. We have applied QCluster to the first four scheduling problem. Ac-
cording to pFabric [8], Deadline-aware scheduling means Deadline-first-then-SRPT in default: after meeting the dealines, we
should use SRPT for other non-deadline flows. Similarly, we have Deadline-first-then-LAS, Deadline-first-then-SJF.

Scheduling Strategy Special Packet PDA (in a flowlet) Dequeuing
problem property weight policy
SRPT [8, 21, 39] Smallest weight first - # bytes remained Priority cannot ascend Strict priorty
LAS [10, 14, 40] Smallest weight first - # bytes sent Priority cannot ascend Strict priorty
Fair Queueing [18, 41, 48] Fair scheduling - # bytes sent Queue cannot change Weighted round robin
Deadline-aware-SRPT [8, 26, 61] | Deadline flow first, then ... Deadline flows Hybrid Priority cannot ascend Strict priorty
Shortest Job First (SJF) Smallest weight first - Total flow size Priority cannot ascend Strict priorty
Deadline-first-then- Deadline flow first, then ... Deadline flows Hybrid - Hybrid
LAS/S]JF/Fairness
Coflow scheduling [4, 16, 64] Weighted fair scheduling - # bytes sent Priority cannot ascend Weighted sharing
Minimum rate guarantees [20] Flow below its minimum Flows below their Hybrid - Hybrid
rate first minimum rate
TSN flow scheduling [1, 2] TSN flow first TSN flows Hybrid - Hybrid
Hybrid scheduling scenarios Hybrid - Hybrid - Hybrid

while one bucket of our SCM sketch has three fields. To address
this problem, we divided our SCM sketch into two sketches. The
two sketches have the same number of buckets and the same k
hash functions. The difference is that each bucket of the first sketch
includes the timestamp and counter, while that of the second sketch
includes the timestamp and Queue ID. The timestamps of two
sketches are the same, and thus redundant, but inevitable.
Update of Queue Weights. For each queue, we maintain two vari-
ables: weight sum (the number of total weight) and packet number.
The queue weight is the weight sum divided by packet number.
After an incoming packet is sent to the chosen queue, we add its
weight to the weight sum and increment the packet number by 1.
When one packet dequeues, we do not update the queue weights
because the ingress/egress pipelines in Tofino switches do not share
memory, so it is tricky to implement the update.

Table 2: H/W resources used in P4 by QCluster.

Resource Usage | Percentage
SRAM 61 6.35%
TCAM 3 1.04%
Hash Bits 94 1.88%
Stateful ALU 5 10.42%

The Problem of Division. The current Tofino switch does not
support the division operation in the data plane, and thus we cannot
directly calculate the queue weight. However, we noticed that these
queue weights can tolerate errors, which allows some delay before
updating the average values. Our key idea is to use the control
plane to calculate and update the queue weights periodically. Every
packet goes through a range match-action table to determine which
queue to send, increments the packet number, and accumulates
the weight sum for this queue. Using range match-action tables
is because comparing one weight with the k queue weights one
by one needs too many stages. The thresholds of the range match
entries are inserted and updated by the control plane periodically.
Resource Usage. In this way, we only need 6 stages: one stage
to get the timestamp, two stages for lookup and insertion of SCM
sketch, one stage for calculating w, one stage for range matching,
and one stage for the increment of weight sum and packet number.
Table 2 shows the resource usage. As a result, we can fit the QCluster
into the switch ASIC for packet processing at line-rate.

1756

6 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments in a testbed and
ns-2, and compare our QCluster with the state-of-the-art solutions.
In all experimental figures below, QCluster for different problems
is abbreviated as follows. QC-SRPT: QCluster for SRPT. QC-LAS:
QCluster for LAS. QC-FQ: QCluster for Fair Queueing. QC-DDL:
QCluster for Deadline-Aware Scheduling.

6.1 Experimental Setup

- W1 w2 w3
-¥-W4 W5 —4-W6

—r3
X

=
5]
3

o
3
o
o
P
a3

o
N
&
o
N
&

0.0

0.00,
1E0 1E1 1E2 1E3 1E4 1ES 1E6 1E7 1E8

Message/FlowSize(Bytes)
(b) Cumulative of Bytes

0 |
1E0 1E1 1E2 1E3 1E4 1ES5 1E6 1E7 1E8
Message/FlowSize(Bytes)

(a) Cumulative of Messages

Cumulative of Messages
5 8
Cumulative of Bytes
g

Figure 3: The workloads used to evaluate. The distributions
are based on measurements from real production data cen-
ters. [7, 9, 24, 47, 50]

Workloads (Figure 3): We use six workloads as previous works
did [8, 10, 39]. Their distributions are shown in Figure 3. We use
W1-W4 which were used to evaluate Homa. Besides, we also use
the Data Mining workload(W5) and the Web Search workload(We6)
which were used to evaluate DCTCP[7], pFabric[8] and PIAS[10].
We consider flows smaller than 1KB as small flows, and flows larger
than 10KB as large flows. Because there is no flow smaller than
1KB in W6, we consider flows less than 10KB and flows larger than
100KB as small flows and large flows in Wé. In the following exper-
iments, we mainly use W4 and W6 for comparisons because these
two workloads are frequently used by existing solutions. We show
the performances on the remaining workloads in supplementary
material due to space limitation.

Comparison with state-of-the-art:

1) For SRPT and LAS, we compare QC-LAS and QC-SRPT with
simulations of pFabric[8], PIAS[10], and DCTCP[7]. We do not
compare with Homa [39] because of two reasons: (1) Homa does
not provide simulation codes in ns-2. (2) Homa assumes congestion
often happens in the downlinks of edge switches, while we do not.

WWW ’22; April 25-29, 2022, Virtual Event, Lyon, France.

2) For Fair Queueing, we compare QC-FQ with ideal fair queue-
ing, ideal fair queueing with ECN, and AFQ. We use the BR[18]
algorithm as the ideal fair queueing. AFQ is chosen because it is
approximately the practical version of BR.

3) For Deadline-Aware Scheduling, we compare our QC-DDL with
pFabric-EDF[8] and DCTCP[7]. Like pFabric-EDF, QC-DDL aims to
minimize the FCT of non-deadline flows and maximize the through-
put of deadline flows. However, other algorithms, like MCP[13] and
Karuna[12], only address one of these situations in their evaluation.
Metrics:

Flow completion times (FCT): FCT is generally used in mea-
suring the performance of scheduling algorithms. We measure the
average FCT across all flows, and separately for different flow sizes.
We also consider the 99th percentile flow completion time.

Jain’s fairness index [28]: As AFQ [48] does, we use Jain’s Fair-
ness index to measure the fairness. It is defined as J(x1, -+ ,x,) =
(O xi)%/(n - " xl.Z), where x; is the average throughput of
flows with the same order of magnitude.

Application throughput: For deadline traffic, we measure the
application throughput which is defined as the fraction of flows
that meet their deadlines.

6.2 Experiments in Testbed

- QC-FQ-1 QC-FQ2
-A-QCFQ3 -¥-QC-FQ-4

70 80 90 50 60 70 80 90
Load (%) Load (%)
(2) W4 (b) W6
Figure 4: Overall average FCT of different initial thresholds
for QC-FQ on different workloads.

——thres1 ——thres2 —thres3 — thres4
thres5 — thres6 — thres7

50 60

10000 10000

7500 7500

5000 5000

Threshold
Threshold

2500

0

15 5 10
Execution Time(Min)

(b) QC-FQ-3

5 10
Execution Time(Min)
(a) QC-FQ-1
Figure 5: Change of thresholds over time for QC-FQ on W6.

—queuel — queue2 —queue3 ——queued
queue5 — queue6 — queue7 — queues

1.000 1.000
c
AE 0.750 S 0.750
5 5
2 0500 2 0500
@ k]
B 0.250 A 0.250
0.125 0.125
0.000 P —5 1 0.000 f . —5
Execution Time(Min) Execution Time(Min)
(a) QC-FQ-1 (b) QC-FQ-3

Figure 6: Change of packet distributions over time for QC-
FQ on W6. The packet distribution is the proportion of pack-

ets in one queue among all packets.
In this section, we show the experimental results in our testbed.

We first take QC-FQ as the example to show the influence of dif-
ferent initial thresholds, and then compare QC-LAS and QC-FQ

1757

Tong Yang, Jizhou Li, Yikai Zhao, Kaicheng Yang, Hao Wang, Jie Jiang, Yinda Zhang, and Nicholas Zhang

with DCTCP and PIAS. We use four different initial threshold set-
tings for QC-FQ (QC-FQ-1 to QC-FQ-4). In the first three settings,
all flows will go to the queue with the lowest, middle or highest
priority at the beginning. In QC-FQ-4, all flows will go to queues
with either the highest or the lowest priority. The performance of
PIAS heavily depends on the thresholds. We implement PIAS in P4
switch, and use two sets of thresholds for PIAS. In our testbed, the
flow size distribution is known, and thus we can obtain the optimal
static thresholds, “PIAS-OPT”. We can also find static thresholds
that result in poor performance, “PIAS-WST”. A simple method
producing “PIAS-WST” is to let 60% packets go to the first queue,
30% packets go to the last.

QC-FQ performance on different initial thresholds: (Fig-
ure 4-6): The overall FCT using different initial thresholds are
close to each other in both W4 and W6. For different initial thresh-
olds in 90% workload of W6, the thresholds of same queues converge
to the similar values respectively, and the proportion of packets in
each queue becomes close to each other. It is because that QCluster
will update and optimize the thresholds in a short period of time,
and the poor performance at the beginning has little impact on
performance in the long term.

-B-DCTCP -~ PIAS-OPT -4 PIAS-WST
-“¥-QC-LAS4-QC-FQ

0.42 37
» 033 » 2.9
£ £
= =4
Q024 Q21 %

015k 13

50 0 70 80 90 50 60 70 80 E
Load(%) Load (%)
(a) W4 (b) We

Figure 7: Overall average FCT on different workloads.
Overall performance for different scheduling policies: (Fig-
ure 7): The overall FCT of our QC-FQ is about 42.4% and 14.3%
lower than that of PIAS-WST, and about 38.8% and 11.0% lower
than that of DCTCP on W4 and W6. Compared to PIAS-OPT, the
overall FCT of QC-FQ is about 6.3% and 3.7% lower on W4 and W6.
Performance on W4 (Figure 8): The FCT of QC-FQ is about 55.3%
lower than that of PIAS-WST and about 51.5% lower than that of
DCTCP for small flows in (0, 1KB). For the 99th percentile flow
of small flows, the FCT of QC-FQ is about 21.6% lower than that
of PIAS-WST. For middle flows in (1KB, 10KB) and large flows
in (10KB, o0), QC-FQ reduces the FCT by about 53.3% and 27.2%
compared to PIAS-WST, respectively.

6.3 Experiments in ns-2

ns-2 settings: We use the leaf-spine topology, which consists of
4 spine switches and 9 leaf (ToR) switches. Each leaf switch is
connected to 16 hosts via 10Gbps links, and connected to each
spine switch via a 40Gbps link. The round-trip time between hosts
under different leaf switches is 40.8s. We use the packet spraying
[19] for load balancing and disable dupACKs. QCluster is deployed
in all switches. For each output port, We use a SCM sketch with
83KB memory.

6.3.1 Evaluation on SRPT and LAS.

We show the performances on W4 and W6 in Figure 9.
Overall performance (Figure 9): Compared to pFabric, the av-
erage FCT of QC-SPRT is about 4.3% lower. Especially on W4 and
W6, the average FCT of QC-SPRT is about 11.3% and 21.7% lower.

QCluster: Clustering Packets for Flow Scheduling

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France.

90

-8-DCTCP PIAS-OPT —4~PIAS-WST
¥ QC-LAS 4-QC-FQ
0.27 0.60 025 0.80
@ 0.20 0.49 4 019 063
£ / —
=
Q 013 038 // 4 013 046
0'0650 60 70 80 90 0'2750 0 70 80 90 0‘0750 60 70 80 90 0'2950 60 70 80
Load(%) Load (%) Load (%) Load (%)
(a) (0,1KB): Avg (b) (0,1KB): 99th Percentile (c) (1KB,10KB): Avg (d) (10KB,c0): Avg
Figure 8: FCT across different flow sizes on W4.
-5-DCTCP =-PIAS _~&-pFabric accurately distinguish messages and the algorithms which use time
-¥-QC-SRPT --QC-LAS
o7 8 interval to distinguish messages, respectively. As shown in Figure
=06 . / 13, the FCT of QC-LAS-Real is about 56.6% lower than that of PIAS-
E E / Real for flows in (0, 10KB). Besides, for flows in (0, 10KB) at 90%
2 a0l 2 load, PIAS-Real increases the FCT by about 80%, while QC-LAS-
035 ; Real increases the FCT by about 20%. The method of distinguishing
%0 ° Loadey 0 ® OO e messages has a great influence on FCT. Besides, the higher the load,
(a) W4 (b) We

Figure 9: Overall average FCT on different workloads for
SRPT and LAS.

Besides, for LAS, the average FCT of QC-LAS is about 4.73% lower
than the average FCT of PIAS. For SRPT, with ECN for congestion
control, QC-SPRT can perform better on most workloads. Next, we
show the detailed analysis on W4.

8- QC-LAS-Arithmetic - QC-LAS-Geometric
A QC-LAS-Harmonic -4~ QC-LAS-Adaptive
135 25

110 3
g (%]

= 085 E 25 /
O 6]

% 060 Y s /

0% 0 70 80 EY %o 0 70 80
Load(%) Load(%)
(2) W4 (b) W6

Figure 10: FCT comparisons using different methods to
achieve Proportional-Cluster-Size for LAS.

-8-QC-SRPT QC-LAS
—A-QC-SRPT-PDA -¥- QC-LAS-PDA

£
=
Q14

4
¢ 50 60

,‘
1]
S

N

@

P
8
s)
N
]

©
-3

Packet Ordered Ratio(%)

7
80 90 50 90

70 0 70 80

Load Load (%)
(a) Packet Ordered Ratio (b) ECT

Figure 11: Impact of Packet Disorder Avoidance on W6 for

SRPT and LAS.
Performance on W4 (Figure 12): Experimental results show that

for small flows in (0,1KB), the average FCT of QC-LAS is about 3%
lower than that of PIAS. As shown in Figure 9(a), the average FCT
of QC-SRPT is about 11.3% lower than the average FCT of pFabric
in W4. It is because that QC-SRPT decreases the FCT of large flows
in (10KB, o) by about 20%. Because the FCT of DCTCP is beyond
the range that pictures can represent, we do not show it.

Impact of distinguishing the messages (Figure 13): In the
above experiments, QC-LAS uses SCM sketch to distinguish the
messages, while PIAS in ns-2 distinguishes the messages totally
accurately, which cannot be achieved in practice. Therefore, we
show how the methods of distinguishing messages influence the
FCT. We use W6 to show the impact of distinguishing the messages.
We add the suffix “-Ideal” and “-Real” to the algorithms which can

1758

the greater the impact of the method of distinguishing messages.
Different methods for Proportional-Cluster-Size: (Fig-
ure 10): To achieve Proportional-Cluster-Size, we evaluate the
performance of QC-LAS using four methods: adaptive-threshold,
geometric mean, harmonic mean, and arithmetic mean. We observe
that the average FCT using adaptive-threshold is about 12.5%, 1.2%,
and 25.3% lower than that using geometric mean, harmonic mean,
and arithmetic mean, respectively. Therefore, we recommend using
adaptive-threshold.

Impact of Packet Disorder Avoidance (PDA) (Figure 11): We
observe that using PDA on QC-LAS can reduce the packet disorder
by about 2.2%, and the cost is to increase the average FCT by about
0.9%. This means that most of packet disorder in QC-LAS is caused
by packet loss, which can not be avoided by PDA. Using PDA on
QC-SRPT can reduce the disorder by about 35.2%, and the cost is
to increase the average FCT by about 2%. This is because in SRPT,
late-arriving packets have higher priority, which is more likely to
cause packet disorder. This kind of disorder can be avoided by PDA.
Summary: 1) QC-LAS outperforms PIAS in general, and improve
the average FCT of PIAS by about 4.73%. Taking the impact of dis-
tinguishing the messages into consideration, QC-LAS significantly
improves the FCT for short flows by about 56.6%. 2) QC-SPRT per-
forms better in most workloads. The average FCT of QC-SPRT is
about 4.3% lower than that of pFabric.

6.3.2 Evaluation on Fair Queueing.

Because QC-FQ uses the number of packets as a unit, we use W6
in the evaluation of Fair Queueing.
Jain’s Fairness Index (Figure 14): As shown in Figure 14, The
Jain’s Fairness Index of QC-FQ is about 5.5% lower than that of ideal
algorithm with ECN and about 11.7% higher than that of AFQ. This
result shows that QC-FQ can halve the gap with the optimal
value compared to the state-of-the-art.
FCT (Figure 15): The average FCT of QC-FQ is about 13.2% lower
than that of ideal fair queueing with ECN, and about 8.4% lower
than that of AFQ. We measure the FCT with the Average FCT - Flow
Size diagram. An ideal fair queueing should be a direct proportion
function. As we can see from Figure 15, though the performance of
our algorithm is not exactly a straight line compared to that of ideal
fair queueing, it nearly satisfies the Fair Queueing requirement.
Meanwhile, it improves the average FCT.

WWW ’22; April 25-29, 2022, Virtual Event, Lyon, France.

Tong Yang, Jizhou Li, Yikai Zhao, Kaicheng Yang, Hao Wang, Jie Jiang, Yinda Zhang, and Nicholas Zhang

-8~ DCTCP PIAS =A-pFabric
~¥- QC-SRPT - QC-LAS
0.098 0.178 0.105 25
’g‘ 0.093 / 0.173 0.099 2.0
= rdr/‘ 1
& o.088 ;% —
L O z 0.168 0.093 / 15
y—
;:Eéi——é——_ 4
0.083 0.163 0.087 19
50 60 70 80 %0 50 60 70 80 %0 50 60 70 80 c 50 70 80 %0
Load(%) Load (%) Load(%) Load (%)
(a) (0,1KB): Avg (b) (0,1KB): 99th Percentile (c) (1KB,10KB): Avg (d) (10KB,c0): Avg
Figure 12: FCT across different flow sizes on W4 for SRPT and LAS.
—&-PIAS-Ideal PIAS-Real
—&-QC-LAS-Ideal -¥-QC-LAS-Real
0.20 032 0.26 60
» 0.16 024 —— A ox
é 45 "4
=
Qo012 ; o6l e 016 30
0'0850 60 T 90 0‘0850 60 90 0‘1150 w0 %o 90

70 80
Load (%)
(b) (0, 10KB): 95th Percentile

70 80
Load (%)
(a) (OKB, 10KB): Avg

70 80
Load (%)
(d) (100KB,c0): Avg

70 80
Load(%)
(c) (10KB,100KB): Avg

Figure 13: Impact of distinguishing the messages on W6 for LAS.

Summary: 1) Though QC-FQ does not achieve as high fairness as
the ideal fair queueing, the overall FCT of QC-FQ is about 13.2%
lower. 2) Compared with AFQ, QC-FQ achieves both higher fairness
and lower latency. The Jain’s Fairness Index of QC-FQ is about 11.7%
higher and the overall FCT of QC-FQ is about 8.4% lower.

[ILoad=70% || Load=90%
T T T T

=
Q
S

Jain's Fairness Index
o
@
o

0.00 -
Ideal Idea-ECN ~ AFQ QC-FQ
Metho

Figure 14: Jain’s Fairness Index of different Fair Queueing

does not take the size of flows into consideration, it will send
the deadline flows aggressively, which will hurt the FCT of non-
deadline flows. The FCT of DCTCP is beyond the range that pictures
can represent, so we do not show it in this figure.

Summary: 1) The application throughput of QC-DDL is about
29% higher than that of DCTCP and about 15% higher than that of
DCTCP. 2) The FCT of non-deadline flows of QC-DDL is about 15%
lower than that of pFabric-EDF.

Algorithms on W6.

— Ideal
— AFQ

Ideal-ECN
—QC-FQ

=

-B-DCTCP - pFabric-EDF A~ QC-DDL
100 6
3 S e w—
< 90 sb— |1 4
2)
£
= ~
S 80 =4 /
g O
o g
£ ;\EB\E ’
[—
0] N
50 60 90 50 %

70 80
Load (%)

(a) Application Throughput

0 70 80
Load (%)

(b) FCT for non-deadline flows

/

FCT(ms)

Zd

5 10 15 5 10 15
Flow Size(K) Flow Size(K)
(a) FairQueue: Load 70% (b) FairQueue: Load 90%
Figure 15: Average FCT comparisons under different flow

size on W6 for Fair Queueing.

6.3.3 Evaluation on Deadline-Aware Scheduling.

In this experiment, we only assign deadlines for flows that are
smaller than 100KB in W4. The deadlines are assumed to be expo-
nentially distributed similar to prior work [8].

Application Throughput (Figure 16(a)): Compared to pFabric-
EDF, QC-DDL can increase the application throughput by about 15%.
And the application throughput of QC-DDL is about 29% higher
than that of DCTCP. Because when switches begin to send the
large deadline flow, pFabric-EDF could be too late to catch up with
its deadline. Besides, when the deadline is a large number, dead-
line flows may be blocked by non-deadline flows regardless of the
remaining time to deadline in pFabric-EDF.

FCT (Figure 16(b)): the FCT of non-deadline flows in QC-DDL is
about 15% lower than that of pFabric-EDF. Because pFabric-EDF

20 20

1759

Figure 16: Deadline-Aware Scheduling on W4.
7 CONCLUSION

This paper proposes a framework, QCluster, to adapt existing flow
scheduling solutions (SRPT, LAS, Fair Queueing, and Deadline-
Aware Scheduling) for limited number of queues without measuring
traffic in advance. The key idea of QCluster is to cluster packets with
similar weights/properties into the same queue. We also propose
the PDA algorithm to avoid packet disorder incurred by scheduling.
We apply QCluster to four typical scheduling problems, and also
show how to apply QCluster to other scheduling problems. We
implement QCluster with PDA in Tofino switches, achieving a clus-
tering speed of 3.2 Tbps. We also implement QCluster in large-scale
ns-2 simulations for four kinds of scheduling problems. Experi-
mental results in testbed and ns-2 show that QCluster achieves
better or comparable performance compared to the state-of-the-art
algorithms for four typical scheduling policies. All the source codes
in ns-2 are available in Github without identity information [45].

QCluster: Clustering Packets for Flow Scheduling

REFERENCES

(1]

[2

—

[3

[10]

[11

[12

[13

[14]

[15

[16

[17]

[18]

=
o

[20]

[21

[22

[23

2016. IEEE 802.1: 802.1Qbv - Enhancements for Scheduled Traffic. http://www.
ieee802.0rg/1/pages/802.1bv.html. (2016).

2017. IEEE 802.1 Time-Sensitive Networking Task Group. http://www.ieee802.
org/1/pages/tsn.html. (2017).

2022. Gearbox: A Hierarchical Packet Scheduler for Approximate Weighted
Fair Queuing. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA. https://www.usenix.
org/conference/nsdi22/presentation/gao

Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agarwal, David
Shmoys, and Amin Vahdat. 2018. Sincronia: near-optimal network design for
coflows. In SIGCOMM. ACM, New York, NY, USA, 16-29.

Albert Gran Alcoz, Alexander Dietmiiller, and Laurent Vanbever. [n. d.]. SPPIFO:
Approximating Push-In First-Out Behaviors using Strict-Priority Queues. In
USENIX NSDI, Vol. 20.

Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan, Navindra
Yadav, and George Varghese. 2014. CONGA: Distributed congestion-aware load
balancing for datacenters.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S.
Sengupta, and M. Sridharan. 2010. Data center TCP (DCTCP). SIGCOMM 40, 4
(2010), 63-74.

Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick Mckeown,
Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal Near-Optimal Data-
center Transport. In SSGCOMM. ACM, New York, NY, USA, 435-446.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Jiang Song, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store. In SSGMETRIC. ACM,
New York, NY, USA, 53-64.

Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2015.
Information-agnostic flow scheduling for commodity data centers. In NSDL
USENIX Association, Berkeley, CA, USA, 455-468.

Zhiruo Cao, Zheng Wang, and Ellen Zegura. 2000. Rainbow fair queueing: Fair
bandwidth sharing without per-flow state. In Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), Vol. 2.
IEEE, 922-931.

Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh. 2016. Scheduling mix-
flows in commodity datacenters with karuna. In SIGCOMM. ACM, New York,
NY, USA, 174-187.

Li Chen, Shuihai Hu, Kai Chen, Haitao Wu, and Danny HK Tsang. 2013. Towards
minimal-delay deadline-driven data center TCP. In Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks. ACM, ACM, New York, NY, USA, 21.
Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. AuTO: scaling deep
reinforcement learning for datacenter-scale automatic traffic optimization. In
SIGCOMM. ACM, New York, NY, USA, 191-205.

Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik, Alon
Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,
et al. 2017. drmt: Disaggregated programmable switching. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. ACM,
1-14.

Mosharaf Chowdhury and Ion Stoica. 2015. Efficient Coflow Scheduling Without
Prior Knowledge. In SIGCOMM. ACM, New York, NY, USA, 393-406.

Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58-75.

Alan Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and simula-
tion of a fair queueing algorithm. In ACM SIGCOMM Computer Communication
Review, Vol. 19. ACM, ACM, New York, NY, USA, 1-12.

Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella. 2013. On
the impact of packet spraying in data center networks. In Infocom. IEEE, Turin,
Italy, 2130-2138.

Wau-chang Feng, Dilip D Kandlur, Debanjan Saha, and Kang G Shin. 1999. Under-
standing and improving TCP performance over networks with minimum rate
guarantees. IEEE/ACM Transactions on Networking 7, 2 (1999), 173-187.

Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. 2015. pHost: Distributed Near-Optimal Datacenter Transport
Over Commodity Network Fabric. In Acm Conference on Emerging Networking
Experiments & Technologies. ACM, New York, NY, USA, 1-12.

Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, and Mohammad Alizadeh.
2016. Juggler: a practical reordering resilient network stack for datacenters. In
Proceedings of the Eleventh European Conference on Computer Systems. ACM, New
York, NY, USA, 20.

Soudeh Ghorbani, Zibin Yang, P Godfrey, Yashar Ganjali, and Amin Firoozshahian.
2017. DRILL: Micro load balancing for low-latency data center networks. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication. ACM, 225-238.

1760

[24

[25

[26

~
=

[28

[29

[30

[32

[33

(34]

[35

&
2

[37

[38

[39

[40

[41

[42

[43

[44

[45

=
&

[47

(48

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France.

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Proceed-
ings of the ACM SIGCOMM 2009 Conference on Data Communication (SSIGCOMM).
ACM, New York, NY, USA, 51-62.

Kegiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya
Akella. 2015. Presto: Edge-based load balancing for fast datacenter networks. In
ACM SIGCOMM Computer Communication Review. ACM, New York, NY, USA,
465-478.

Chi-Yao Hong, Matthew Caesar, and P Godfrey. 2012. Finishing flows quickly
with preemptive scheduling. In SIGCOMM. ACM, ACM, New York, NY, USA,
127-138.

Xin Sunny Huang, Xiaoye Steven Sun, and TS Eugene Ng. 2016. Sunflow: Efficient
optical circuit scheduling for coflows. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and Technologies. 297-311.

Raj Jain, Dah Ming Chiu, and Hawe WR. 1998. A Quantitative Measure Of Fairness
And Discrimination For Resource Allocation In Shared Computer Systems. CoRR
¢s.NI/9809099 (01 1998).

Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. 2007. Dy-
namic load balancing without packet reordering. ACM SIGCOMM Computer
Communication Review 37, 2 (2007), 51-62.

Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In
Proceedings of the Symposium on SDN Research. ACM, ACM, New York, NY, USA,
10.

Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,
and Lawrence] Wobker. 2015. In-band network telemetry via programmable
dataplanes. In ACM SIGCOMM.

Changhyun Lee, Chunjong Park, Keon Jang, Sue B Moon, and Dongsu Han.
2015. Accurate Latency-based Congestion Feedback for Datacenters.. In USENIX
Annual Technical Conference. 403-415.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow monitor-
ing with univmon. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference. ACM.

J. Macqueen. 1965. Some Methods for Classification and Analysis of MultiVari-
ate Observations. In Proc of Berkeley Symposium on Mathematical Statistics &
Probability.

Dominik Mautz, Claudia Plant, and Christian Bohm. 2020. DeepECT: The Deep
Embedded Cluster Tree. Data Science and Engineering 5, 4 (2020), 419-432.
Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016.
Universal packet scheduling. In 13th { USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 16). 501-521.

Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, David Zats, et al. 2015. TIMELY:
RTT-based Congestion Control for the Datacenter. In ACM SIGCOMM Computer
Communication Review. ACM, 537-550.

Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott Shenker. 2014. Re-
cursively Cautious Congestion Control.. In NSDI. 373-385.

Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: a receiver-driven low-latency transport protocol using network priorities.
In SIGCOMM. ACM, New York, NY, USA, 221-235.

Ali Munir, Ihsan A Qazi, Zartash A Uzmi, Aisha Mushtaq, Saad N Ismail, M Safdar
Igbal, and Basma Khan. 2013. Minimizing flow completion times in data centers.
In Proc. IEEE INFOCOM, 2013. 2157-2165.

John Nagle. 1987. On packet switches with infinite storage. IEEE transactions on
communications 35, 4 (1987), 435-438.

Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas
Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. 2018.
Restructuring endpoint congestion control. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication. ACM, 30-43.
Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication. ACM, 85-98.

Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David Walker. 2016.
Compiling Path Queries.. In NSDI. 207-222.

QCluster [n. d.]. The source codes of our and other related algorithms. https:
//github.com/qcluster/QCluster. ([n. d.]).

Florian Richter, Yifeng Lu, Daniyal Kazempour, and Thomas Seidl. 2020. “Show
Me the Crowds!” Revealing Cluster Structures Through AMTICS. Data Science
and Engineering 5, 4 (2020), 360-374.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In SSIGCOMM. ACM,
New York, NY, USA.

Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.
Approximating Fair Queueing on Reconfigurable Switches. In NSDI. 1-16.

http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
https://www.usenix.org/conference/nsdi22/presentation/gao
https://www.usenix.org/conference/nsdi22/presentation/gao
https://github.com/qcluster/QCluster
https://github.com/qcluster/QCluster

WWW ’22; April 25-29, 2022, Virtual Event, Lyon, France. Tong Yang, Jizhou Li, Yikai Zhao, Kaicheng Yang, Hao Wang, Jie Jiang, Yinda Zhang, and Nicholas Zhang

[49] Vishal Shrivastav. 2019. Fast, scalable, and programmable packet scheduler in In Proceedings of the Symposium on SDN Research. ACM.
hardware. In Proceedings of the ACM Special Interest Group on Data Communica- [57] Tofini [n. d.]. Barefoot Tofino: World’s fastest P4-programmable Ethernet switch
tion. ACM, 367-379. ASICs. https://barefootnetworks.com/products/brief-tofino/. ([n. d.]).

[50] R. Sivaram. 2008. Some Measured Google Flow Sizes. Google internal memo [58] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. 2012. Deadline-aware
(2008). datacenter tcp (d2tcp). ACM SIGCOMM Computer Communication Review 42, 4

[51] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad (2012), 115-126.

Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking. [59] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2016. Packet transactions: High-level programming for line-rate switches. In 2017. Let it flow: Resilient asymmetric load balancing with flowlet switching.
Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 15-28. In 14th {USENIX} Symposium on Networked Systems Design and Implementation

[52] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait Dixit, ({NSDI} 17). 407-420.
and Mihai Budiu. 2015. Dc. p4: Programming the forwarding plane of a data- [60] W.Wang and G. Casale. 2015. Evaluating weighted round robin load balancing for
center switch. In Proceedings of the 1st ACM SIGCOMM Symposium on Software cloud web services. In International Symposium on Symbolic & Numeric Algorithms
Defined Networking Research. ACM, 2. for Scientific Computing.

[53] Anirudh Sivaraman, Nick Mckeown, Suvinay Subramanian, Mohammad Al- [61] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.
izadeh, and Sachin Katti. 2016. Programmable Packet Scheduling at Line Rate. In Better never than late: Meeting deadlines in datacenter networks. ACM SIGCOMM
SIGCOMM. ACM, New York, NY, USA. Computer Communication Review 41, 4 (2011), 50-61.

[54] Anirudh Sivaraman, Suvinay Subramanian, Anurag Agrawal, Sharad Chole, [62] Keith Winstein and Hari Balakrishnan. 2013. TCP ex machina: computer-
Shang-Tse Chuang, Tom Edsall, Mohammad Alizadeh, Sachin Katti, Nick McKe- generated congestion control. In ACM SIGCOMM Computer Communication
own, and Hari Balakrishnan. 2015. Towards programmable packet scheduling. Review. ACM, 123-134.

In Proceedings of the 14th ACM workshop on hot topics in networks. ACM, 23. [63] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

[55] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakrishnan. Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-
2014. An experimental study of the learnability of congestion control. In ACM wide measurements. In Proc. ACM SIGCOMM. 561-575.

SIGCOMM Computer Communication Review. ACM, 479-490. [64] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf Chowdhury, and Yanhui

[56] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S Muthukrish- Geng. 2016. CODA: Toward automatically identifying and scheduling coflows in
nan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data plane. the dark. In Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 160-173.

1761

https://barefootnetworks.com/products/brief-tofino/

QCluster: Clustering Packets for Flow Scheduling

Appendices

A PACKET DISORDER AVOIDANCE

For an incoming packet a0y, we use the SCM sketch to get the
queue where the previous packet stays. The update and query of
queue ID are different between LAS and Fair Queueing.

Update of queue ID: We check the timestamp of each mapped
bucket in the SCM sketch. Suppose that the time now is t50w, and
the chosen queue for ay ., is the ith queue. If the timestamp t3,,cker
is smaller/older than t;ov — ATFjo1et, We directly set the queue ID
of this bucket to i. Otherwise, for LAS, we update the queue ID to i
only if the i queue has lower-priority than the queue recorded in
the bucket, and for fair queueing, we do not update the queue ID.
Query of queue ID: We only query the queue ID if a4y is not
the first packet of a new Flowlet. For LAS, we choose the queue
with the highest priority in all mapped buckets. For Fair Queueing,
we choose the queue with the smallest/oldest timestamp in all
mapped buckets. Both methods can minimize the minus effect of
hash collisions.

The hash collisions can still cause the SCM sketch giving the
wrong queue IDs. For LAS, this mistake will slightly downgrade the
performance, but it will not incur packet disorder, because the SCM
sketch only gives the overestimation on queue IDs. In other words,
the SCM sketch may give a lower-priority queue than the queue of
the previous packet, and it will never give a higher-priority queue,
so the incoming packet will not go to the higher-priority queue and
packet disorder will not happen. For Fair Queueing, all queues have
the same priority but different weights, so there are still chances
that packet disorder happens.

B OTHER EXPERIMENT RESULTS IN
TESTBED

-5-DCTCP -~ PIAS-OPT =+ PIAS-WST
-¥-QC-LAS 49-QC-FQ
0.37 N . 0.63
0.53F+
0.43 ’/._,——*-—0/‘
50 70 80 90 0 3350 60 70 80 90
Load(%) Load(%)
(a) (0,10KB): Avg (b) (0,10KB): 99th Percentile
0.48 7.7
0.37 6.0
0.26 4.3F
0.15 2.6
50 60 90 50 60 90

70 80 70 80
Load (%) Load(%)

(c) (10KB,100KB): Avg (d) (100KB,00): Avg

Figure 17: FCT across different flow sizes on W6 in testbed.

1762

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France.

Performance on W6 (Figure 17): For small flows in (0, 10KB),
the FCT of QC-FQ is about 50.2% lower than that of PIAS-WST and
about 53.4% lower than that of DCTCP. For the 99th percentile flow
of small flows, the FCT of QC-FQ is about 21.7% lower than that
of PIAS-WST. For middle flows in (10KB, 100KB), QC-FQ reduces
the FCT by about 47.1% compared to PIAS-WST. For large flows in
(100KB, o), our QC-FQ reduces the FCT by about 12.5% compared
to PIAS-WST.

C OTHER EXPERIMENT RESULTS ON LAS
AND SRPT IN NS2

-=-DCTCP PIAS —&-pFabric
C-SRPT - QC-LAS
019 72 2 0.25
@ 017 / 0.22
£ / /
= /’/‘%
Q 015 / / 0.19

-

0.13 0.16
50 60 70 80 50 60
Load (%)

70 80 90
Load (%)

(a) (0, 1IKB): Avg (b) (0, 1KB): 99th Percentile

0.22 0.24
0.19 1 o021t // 1
% o
0.16 { o8l |
— ——

0.13 0.15/
50 20 50 60 0 %0

70 80 70 8
Load(%) Load (%)

(c) (1KB,10KB): Avg

Figure 18: FCT across different flow sizes on W1 for SRPT
and LAS.

(d) (10KB,00): Avg

Performance on W1 (Figure 18): In W1, more than 95% of flows
are smaller than 1KB. That is to say, more than 95% of flows can
be transmitted in one TCP packet. In this situation, the advantage
of SRPT over LAS is not obvious. Therefore, our QC-LAS may
outperform pFabric on W1 in some loads. For short flows in (0,
1KB), the FCT of our QC-LAS is about 6.9% lower than that of PIAS.
Without ECN for congestion control, congestion is more likely to
occur in switches. Therefore, the 99th percentile FCT for small
flows of pFabric is even higher than that of DCTCP at 90% load.
Performance on W2 (Figure 19): For small flows in (0,1KB), the
average FCT of the QC-SRPT is about 7% lower than that of the
pFabric. Moreover, QC-SRPT also reduces the 99th percentile FCT
by about 50.1% at 90% load. Similar to W1, pFabric does not perform
so well when data centers are dominated by very small flows. The
FCT of QC-LAS is about 1.2% lower than the FCT of PIAS for small
flows in (0, 1KB). And QC-LAS reduces the FCT for middle flows in
(1KB, 10KB) by about 13%.

Performance on W3 (Figure 20): For small flows in (0,1KB), our
QC-LAS, QC-SRPT, PIAS and pFabric achieve similar FCT. However,
the 99th percentile FCT for small flows of pFabric is about 8% higher
than that of QC-SRPT. For middle flows in (1KB,10KB), compared

WWW ’22; April 25-29, 2022, Virtual Event, Lyon, France.

-=-DCTCP -~ PIAS - pFabric
-¥-QC-SRPT —4-QC-LAS
0.146 72 o 0.30
@ 0.134 0.25
£
E
3
T 0.122 0.20

0.110 0.15

50 60 70 80 90 50 60
Load(%)

70 80
Load(%)
(a) (0,1KB): Avg (b) (0,1KB): 99th Percentile

0.19 T T T 0.40

0.16

0.35 Qz‘

0.30

i

60

o
=]

70 80 70 80
Load(%) Load (%)
(c) (1KB,10KB): Avg

Figure 19: FCT across different flow sizes on W2 for SRPT
and LAS.

(d) (10KB,0): Avg

-5-DCTCP -=-PIAS —A-pFabric
C-SRPT C-LAS

0.009 72 ol 0.184
‘@ 0.096| 0.178
£
[t
Q o093} 1 oar

0'09050 60 70 80 90 0‘16650 60 70 80 90

Load(%) Load(%)
(a) (0, 1IKB): Avg (b) (0, 1KB): 99th Percentile

0.18 / 0.39

0.15} ; 4 033

0.12f 4 027

0.09 0.21

50 60 0 90 50 60 90

70 8 70 80
Load (%) Load (%)

(c) (1KB,10KB): Avg

Figure 20: FCT across different flow sizes on W3 for SRPT
and LAS.

(d) (10KB,0): Avg

to PIAS, our QC-LAS reduces the FCT by about 60.8%. Besides, our
QC-LAS reduces the FCT of large flows by about 22.4% compared
to PIAS.

Performance on W5 (Figure 21): Our QC-SRPT and pFabric
achieve similar FCT for small flows. And the FCT for small flows of
PIAS is about 1% higher than that of QC-LAS. The 99th percentile
FCT for small flows of PIAS is about 87.9% higher than that of
QC-LAS.

Performance on W6 (Figure 22): For small flows in (0,10KB), the
average FCT of the QC-SRPT is nearly the same as that of pFabric.

1763

Tong Yang, Jizhou Li, Yikai Zhao, Kaicheng Yang, Hao Wang, Jie Jiang, Yinda Zhang, and Nicholas Zhang

-8-DCTCP -=~PIAS —A~pFabric
C-SRPT C-LAS
0.087 -“¥-Q --Q 017
0.086 - 0.14
L —]

L4
o.oss%%g ! 011}

* - -
0.084 0.08

50 60 70 80 90 50 60 70 80
Load(%) Load (%)

FCT(ms)

2

90

(a) (0, 1IKB): Avg (b) (0, 1KB): 99th Percentile

0.094 113

0.092 92 / é

WA

./*’Ap_‘ﬁ

0.088 50
50 60 70 80 90 5
Load(%)

70 80
Load(%)

(c) (1KB,10KB): Avg

Figure 21: FCT across different flow sizes on W5 for SRPT
and LAS.

(d) (10KB,co): Avg

-5-DCTCP <~ pFabric A~ QC-SRPT
0.094 . . . 0.177
@ 0.092} 0.174f
£
[t
Q o0.000} 0171}
0.088 0.168
50 60 70 80 B 50 60 70 80
Load (%) Load (%)
(a) (0KB, 10KB): Avg (b) (0, 10KB): 99th Percentile
0.127 60 /
0.1251 46 /
0.123} 32 /‘ 1
0.121 18 /‘/

50 60 70 80 70 80
Load (%) Load (%)
(c) (10KB,100KB): Avg

Figure 22: FCT across different flow sizes on W6 for SRPT.

(d) (100KB,oo): Avg

For flows in (10KB, 100KB), the FCT of QC-SRPT is higher than that
of pFabric. However, similar to W4, the average FCT of QC-SRPT
is about 21.7% lower than the average FCT of pFabric in W6. It is
because that QC-SRPT decreases the FCT of large flows in (10KB,
o) by about 25%.

	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Solution

	2 Background and Related Work
	3 The QCluster Framework
	3.1 The QCluster Framework
	3.2 The Scheduling Count-Min Sketch
	3.3 Adjusting Cluster Size
	3.4 Packet Disorder Avoidance

	4 Applications
	5 Testbed and Implementations
	5.1 Testbed Setup
	5.2 Implementation in P4

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Experiments in Testbed
	6.3 Experiments in ns-2

	7 Conclusion
	References
	A Packet Disorder Avoidance
	B Other Experiment results in testbed
	C Other Experiment results on LAS and SRPT in ns2

