
https://doi.org/10.1007/s11280-018-0583-0

Fine-grained probability counting for cardinality
estimation of data streams

Lun Wang1 ·Tong Yang1 ·Hao Wang1 · Jie Jiang1 ·
Zekun Cai1 ·Bin Cui1 ·Xiaoming Li1

Received: 7 March 2018 / Revised: 24 April 2018 / Accepted: 26 April 2018

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Estimating the number of distinct flows, also called the cardinality, is an impor-
tant issue in many network applications, such as traffic measurement, anomaly detection,
etc. The challenge is that high accuracy should be achieved with line speed and small
auxiliary memory. Flajolet-Martin algorithm, LogLog algorithm, and HyperLogLog algo-
rithm form a line of work in this area with improving performance. In this paper, we
propose refined versions of these algorithms to achieve higher accuracy. The key observa-
tions are (1) the “leftmost” hash functions used by these algorithms can be generalized to
reach higher accuracy, (2) the amendment coefficient can be highly biased in some certain

This work was done by Lun Wang, Zekun Cai, and Hao Wang under the guidance of their mentor: Tong
Yang.

This article belongs to the Topical Collection: Special Issue on Big Data Management and Intelligent
Analytics
Guest Editors: Junping Du, Panos Kalnis, Wenling Li, and Shuo Shang

� Tong Yang
yang.tong@pku.edu.cn; yangtongemail@gmail.com

Lun Wang
lun.wang@pku.edu.cn

Hao Wang
wanghao1996@pku.edu.cn

Jie Jiang
surlavi@pku.edu.cn

Zekun Cai
1400013703@pku.edu.cn

Bin Cui
bin.cui@pku.edu.cn

Xiaoming Li
lxm@pku.edu.cn

1 Department of Computer Science, Peking University, Beijing, China

World Wide Web (2019) 22:2065–2081

Published online: 4 May 2018
/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0583-0&domain=pdf
mailto: yang.tong@pku.edu.cn
mailto: yangtongemail@gmail.com
mailto: lun.wang@pku.edu.cn
mailto: wanghao1996@pku.edu.cn
mailto: surlavi@pku.edu.cn
mailto: 1400013703@pku.edu.cn
mailto: bin.cui@pku.edu.cn
mailto: lxm@pku.edu.cn

streams or datasets so dynamically setting the amendment coefficient instead of using the
one derived in pure math can lead to much better accuracy. Experimental results show great
improvement of accuracy and stability of the refined versions over original algorithms.

Keywords Cardinality estimation · Probability counting · Network measurement ·
Data streams

1 Introduction

1.1 Background and motivation

Determining the number of distinct items, namely cardinality, is an important issue in many
network applications, such as traffic management [7, 10], anomaly detection, etc. Many
database applications, such as database query optimization [9], require fast and accurate
estimation of cardinality as well.

There are mainly two kinds of algorithms for cardinality estimation. The first kind of
algorithms is based on packet sampling (e.g. Adaptive Sampling [8]). However, these algo-
rithms suffer from low accuracy and are unacceptable in fine-grained applications. The
second kind of algorithms is based on probabilistic counting. One of the earliest probabilis-
tic counting algorithms is Linear Counting [33], proposed by Whang, Zanden, and Taylor.
But its requirement for linear space makes it unpractical in real networks, especially when
the cardinality to record is large. Multiresolution Bitmap [7] and Adaptive Bitmap [7] are
refined versions of Linear Counting and both achieve higher accuracy. However, Multireso-
lution Bitmap requires large space, and Adaptive Bitmap has many restrictions on the target
datasets.

Flajolet and Martin proposed another algorithm, namely Flajolet-Martin algorithm [9],
using d bitmaps, each of logNmax bits, to record estimated cardinality, and reaches a stan-
dard deviation close to 0.78/

√
d. In order to achieve a high accuracy, d should be large, and

d logNmax bits is costly for the limited memory in routers or switches. This limitation of
FM algorithmmotivates another more memory-efficient algorithm called LogLog algorithm
[5], in which each counter only takes up log logNmax bits. However, LogLog algorithm can
only reach a relative accuracy as high as 1.30/

√
d. HyperLogLog algorithm is proposed

to address the issue and achieves great success by reducing relative accuracy to 1.04/
√

d.
Detailed descriptions of these algorithms are given in Section 2.

1.2 Limitation of prior art and our proposed solution

From the above discussion, we can see that these methods either suffer from low accuracy or
high memory requirement. The key observations are (1) FM algorithm, LogLog algorithm
and HyperLogLog algorithm all suffer from large “record gap”. For example, a bitmap with
leftmost 1 at 18th or 19th position will be regarded as 218 = 262144 or 219 = 524288. Then
if a stream has a real cardinality of around 30000, then the bitmap will give out pretty rough
estimation because the gap of 2 possible records is too large, (2) the amendment coefficient
can be highly biased in some streams or datasets. For example, 20 elements with “leftmost”
hash positions from 0 to 19 can be recorded as 219 = 524288 with relative error as high
as 26213. Although this example can hardly happen in practice and can be solved using
averaging, we observe that in some real-world datasets, the amendment coefficient is still
far from good.

World Wide Web (2019) 22:2065–20812066

The “leftmost” hash functions used by these algorithms can be viewed as a process of
consecutive division by 2. In another view, these hash functions can be regarded as geo-
metrically distributed with the common ratio of 1/2. However, 1/2 is a too coarse-grained
common ratio leading to a huge gap between possible records. For a LogLog algorithm with
d = 64, it can only guarantee an average error of 16.25%. To address this issue, we pro-
pose a generalized version of “leftmost” hash functions, namely geometrically-distributed
hash functions. We use it to replace “leftmost” hash functions in FM, LogLog and Hyper-
LogLog algorithms in order to make the gap more fine-grained. Another improvement is
that instead of using the amendment coefficient derived by pure math, we dynamically set
the coefficient by learning from a small portion of streams or datasets. This may introduce
extra overheads in the beginning but will greatly benefit the accuracy in the long term.

Since the paper is expanded from its conference version [30], we want to highlight the
new technique contributions here. First, we proposed to dynamically set the amendment
coefficient. Second, we add refined version HyperLogLog algorithm. Third, we added a
large number of new experiments on real-world datasets to show the efficiency of our
refinements.

Our key contributions

– We generalize the “leftmost” hash functions to geometrically-distributed hash func-
tions.

– We propose to dynamically set the amendment coefficient.
– We apply two techniques to Flajolet-Martin, LogLog and HyperLogLog algorithm,

and carry out extensive experiments which show great improvement in accuracy and
stability.

2 Related work

In this section, we will introduce Flajolet-Martin, LogLog and HyperLogLog algorithm in
details. The symbols used are shown in Table 1.

Table 1 Symbols used in the
paper Symbol Description

n # of Incoming Elements.

m # of bitmaps or counters.

w # of bits of a bitmap

div dividend used in FM, LogLog and HyperLogLog.

B[i][j] j th bit in ith bitmap in FM.

σ(.) the position of leftmost 1 in bits.

ρ(B[i]) the position of leftmost 0 in B[i].
C[i] ith counter in LogLog or HyperLogLog.

e a coming element like a flow in a stream.

hu(e) Uniformly distributed hash function.

hg(e, div) geometrically distributed hash value.

// division operation. The result is truncated to integer.

World Wide Web (2019) 22:2065–2081 2067

Table 2 Algorithms, memory cost and relative accuracy

Algorithm Memory (units) Relative Accuracy

Flajolet-Martin m bitmaps (64 bits) 0.78/
√

m

LogLog m counters (1 byte) 1.30/
√

m

HyperLogLog m counters (1 byte) 1.04/
√

m

2.1 The Flajolet-Martin algorithm

Flajolet and Martin proposed a classic algorithm for approximate cardinality counting,
namely Flajolet-Martin algorithm [9]. FM sketches are widely used in network applications
to count flow numbers, such as data dissemination [19, 20] and probabilistic aggregation
[11, 21]. The memory cost and theoretical accuracy of FM algorithm is shown in Table 2.

As shown in Figure 1, FM algorithm is composed of d bitmaps and each bitmap has w

bits. The ith bitmap is denoted by B[i] and the jth bit of B[i] is denoted by B[i][j]. Each
bitmap B[i] is associated with an independent hash function h

(i)
g (., .). Specially, h(i)

g (., .) is
called “leftmost” hash functions. It maps half of all items to the leftmost bit of the ith array,
a quarter to bit 1, and so on. The concrete method to generate such functions is discussed
in Section 3.1. For each item e, FM algorithm computes d hash functions h

(i)
g (e, 2) and sets

B[i][h(i)
g (e, 2)%w] to 1. To answer a query, FM sketch returns 1.2928 × 2

1
d

∑d−1
i=0 ρ(B[i]),

where B[i] denotes the lowest bit with value 0, as derived in [9].

2.2 LogLog and HyperLogLog algorithm

Durand and Flajolet proposed another classic algorithm, namely LogLog algorithm [5], for
cardinality estimation. The auxiliary memory required is extremely small, in the order of
log logNmax . Nmax is a priori upper bound on cardinality. Flajolet et al. proposed Hyper-
LogLog algorithm [10] to improve the accuracy of LogLog algorithm. The memory cost
and theoretical accuracy of LogLog and HyperLogLog algorithm is shown in Table 2.

As shown in Figure 2, LogLog algorithm uses d counters and each counter has
log logNmax bits. The ith counter is denoted by C[i]. There is only one hash function hu(.).
The complete hash value of item e is denoted by hU(e). The lowest k = log d bits of hu(e) is
denoted by hl(e) and is used to locate a counter. The higher bits hh(e) of hu(e) is also used
to generate “leftmost” hash values hg(e, 2)) with the method discussed in Section 3.1. Then
C[hl(e)] is set to max{C[hl(e)], hg(e, 2)}. To answer a query, LogLog algorithm returns

αdd2
1
d

∑
C[i], where αd := (�(−1/d) 1−21/d

log 2)−d and �(s) := 1
s

∫ ∞
0 e−t t sdt , as derived in

[5].
HyperLogLog does many refinements on LogLog from practical perspectives. In this

paper, we only focus on the replacement of arithmetic mean by harmonic mean. The

insertion is the same as LogLog. To answer a query, HyperLogLog returns αdd2
d∑

1/C[i] .

Figure 1 Structure of a FM
Sketch 0 10 1 00 1 1

0 10 0 10 1 1
0 10 0 01 1 1

e

World Wide Web (2019) 22:2065–20812068

Figure 2 Structure of LogLog

e
h

101000

3

4

5

10 01

10

11

4

00

There are many more sketches in the literature. Interested readers please refer to [2–4, 6,
13, 17, 18, 25–29, 31, 32, 34].

3 Methodology

In this section, we give a detailed description of our algorithms. First, we introduce how to
generalize “leftmost” hash functions to geometrically distributed hash functions. Second,
we present how to dynamically set the amendment coefficient. Then, we propose refined
FM algorithm, refined LogLog algorithm and refined HyperLogLog algorithm which use
geometrically distributed hash functions and dynamic amendment coefficient. The symbols
we use are defined in Table 1.

3.1 Geometrically distributed hash functions

The most widely used hash functions are uniformly distributed hash functions. These hash
functions map the input strings to nearly uniformly distributed binary strings. It is theoret-
ically impossible to find a hash function mapping nonuniform inputs into uniform outputs.
But in practice, we can easily find one that is close enough [16].

In cardinality counting algorithms, a “leftmost” hash function is frequently required. The
Pseudocode is shown in Algorithm 1. “Leftmost” hash function can be viewed as a process
of consecutive division by 2. The hash value is the number of iterations before the remainder
is 0.

Algorithm 1 “Leftmost” Hash Function

1 Function LeftMostHash(e):
2

3

4 return

5 end

Table 3 Derived amendment
coefficients Algorithm Amendment Coefficient

Flajolet-Martin 1.29281

LogLog 0.39701

HyperLogLog 0.39701

World Wide Web (2019) 22:2065–2081 2069

Algorithm 2 Geometrically Distributed Hash Function

1 Function ConsecutiveDivide(uniform hash value, div):
2 = 0;

3 while uniform hash value%r != 0 do

4

5

6 end

7 return

8 end

9 Function GDHash(e, div):
10

11

12 return

13 end

As shown in Algorithm 2, we extend the algorithm to generate geometrically distributed
hash functions with more choices of common ratio. For a binary string, we define a subrou-
tine called ConsecutiveDivide(., .). We use ConsecutiveDivide(., .) to replace σ(.) in
Algorithm 1, and get the extended algorithm 2. We can see that the hash values should be a
geometrically distributed array with common ratio (div − 1)/div and first term div.

One problem with function ConsecutiveDivide(., .) is that the modulo operation is
time-consuming and may become a bottleneck for GDHash(., .). However, if we pick div

as 2k , then we can use shift operation to replace the modulo operation and get an accelerated
version of ConsecutiveDivide(x, i). Thus, we choose to use geometrically distributed
hash functions with div = 4 in this paper.

3.2 Dynamic amendment coefficient

In order to get unbiased estimate of cardinality, the proposers of FM, LogLog and Hyper-
LogLog derived an amendment coefficient with pure math as shown in Table 3. However,
we observe in practice that these coefficients can be highly biased when facing certain
streams or datasets. We propose to use a small portion of the stream or dataset to learn the
coefficients instead of using the derived ones. The coefficients we use in the experiments
are shown in Table 4.

Table 4 Learned amendment coefficient when n = 1000

Dataset/Algorithm FM LogLog HyperLogLog

Synthetic 0.829 4.81 1.95

Self-Collected 0.608 3.541 1.333

CAIDA 0.806 4.680 1.723

Penn Treebank 0.771 9.693 4.743

World Wide Web (2019) 22:2065–20812070

3.3 Refined algorithms

3.3.1 Refined Flajolet-Martin algorithm

Refined Flajolet-Martin algorithm is composed of bitmaps initialized to 0. To initialize a
refined FM, three parameters need to be determined: 1) the number of bitmaps: d; 2) the
size of each bitmap in terms of bits: w; 3) the dividend used in geometrically distributed
hash functions: div. The selection of these parameters will determine the capacity, accuracy
and memory efficiency of the refined FM algorithm.

Insertion As shown in Algorithm 3, when an item e is inserted, for each bitmap, we cal-
culate a uniform hash value hu(e). Then we calculate the geometrical hash value and set the
corresponding bit to 1.

Query As defined in Algorithm 3, when answering a query, each bitmap refined FM will
return amend × div(div−1

div
)posB[i]. The whole algorithm will return the average of these

estimates.

Algorithm 3 Refined Flajolet-Martin Algorithm

1 struct

2 bitmap

3 int

4 Function Insert(e):
5

6 for each bitmap do

7

8

9 end

10 end

11 Function Query():
12 float 0;

13 for i in d do

14

15

16 end

17 return ;

18 end

19 RefinedFM;

3.3.2 Refined LogLog algorithm

Refined LogLog algorithm is composed of counters initialized to 0. To initialize a refined
LogLog, three parameters need to be determined: 1) the number of counters: d; 2) the size

World Wide Web (2019) 22:2065–2081 2071

of each counter in terms of bits: w; 3) the dividend: div. The selection of these parameters
will determine the capacity, accuracy and memory efficiency of the refined LogLog.

Insertion As shown in Algorithm 4, when an item e is inserted, we calculate the hash
value hu(e). We use hu(e)%d to locate a counter. If GDHash(hu(e)//d) is larger than the
counter value, the counter value will be updated to GDHash(hu(e)//d). Otherwise, the
counter will keep its value.

Query As defined in Algorithm 4, when answering a query, refined LogLog will return
amendd,rdiv × d(div

div−1)
sum/d , where sum is the sum of all counters.

Algorithm 4 Refined LogLog Algorithm

1 struct

2 counter

3 int

4 Function Insert(e):
5

6

7

8 end

9 Function Query():
10 float = 0;

11 for i in d do

12

13 end

14 return

15 end

16 RefinedLogLog;

3.3.3 Refined HyperLogLog algorithm

Refined HyperLogLog is composed of counters initialized to 0. To initialize a refined
HyperLogLog, three parameters need to be determined: 1) the number of counters: d; 2)
the size of each counter in terms of bits: w; 3) the dividend: div. The selection of these
parameters will determine the capacity, accuracy and memory efficiency of the refined
HyperLogLog.

Insertion As shown in Algorithm 5, when an item e is inserted, we calculate the hash
value hu(e). We use hu(e)%d to locate a counter. If GDHash(hu(e)//d) is larger than the
counter value, the counter value will be updated to GDHash(hu(e)//d). Otherwise, the
counter will keep its value.

Query As defined in Algorithm 5, when answering a query, refined HyperLogLog will
return amendd,rdiv × d(div

div−1)
d/sum, where sum is the sum of the inverses of all counters.

World Wide Web (2019) 22:2065–20812072

Algorithm 5 Refined HyperLogLog Algorithm

1 struct

2 counter

3 int

4 Function Insert(e):
5

6

7

8 end

9 Function Query():
10 float = 0;

11 for i in d do

12

13 end

14 return

15 end

16 RefinedHyperLogLog;

4 Experimental results

4.1 Experimental setup

Basic settings We run the experiments on a Dell Inspiron-15 5000 series Notebook PC
with Intel(R) Core(TM) i7- 4510U CPU @2.00GHz 2.60GHz, 8.00 GB memory and
Ubuntu 14.04 LTS Desktop system. All the codes are open-sourced at Github [22].

Metrics We define two metrics to evaluate our algorithm’s performances.

– AAE: Average absolute error, defined as the average value of absolute error over the
dataset number, where absolute error is the absolute value of the difference between
accurate value and estimated value.

– ARE: Average relative error, defined as the average value of relative error over the
dataset number, where relative error is the absolute value of the difference between
accurate value and estimated value divided by the accurate value.

Datasets

– Synthetic Strings: This dataset contains randomly generated strings within length of
128. The elements in the context are the next string, and the cardinality is the distinct
string number.

– Self-Collected Traces: This dataset contains traffic traces collected from a tier-1 router.
We identify flows using the standard 5-tuple. The traces approximately obey zipfian
distribution. The elements in the context are random strings, and the cardinality is the
distinct flow number.

World Wide Web (2019) 22:2065–2081 2073

Figure 3 Experimental results of refined Flajolet-Martin algorithms on synthetic strings

– CAIDA: CAIDA dataset contains anonymous passive traffic traces from CAIDA’s
equinix-chicago monitor on high-speed Internet backbone links. The elements in the
context are the coming packets, and the cardinality is the distinct flow number.

– Penn TreeBank: The Penn Treebank dataset [23] selected 2,499 stories from a three
year Wall Street Journal (WSJ) collection of 98,732 stories for syntactic annotation.
The elements in the context are words, and the cardinality is the distinct word number.

4.2 Experimental results

Figures 3, 4, 5, 6, 7, 8, 9, 10, 11 12, 13 and 14 show all the experimental results. The first
figure of each line shows a summary–the average of the following 3 figures. The following
three figures show the n = 1000, n = 10000, and n = 100000.

Figure 4 Experimental results of refined Flajolet-Martin algorithms on self-collected traces

World Wide Web (2019) 22:2065–20812074

Figure 5 Experimental results of refined Flajolet-Martin algorithms on CAIDA

4.2.1 Refined Flajolet-Martin algorithm

The experimental results of refined Flajolet-Martin algorithm is shown in Figures 3, 4, 5
and 6.

Synthetic strings As shown in Figure 3, our experimental results show that refined
Flajolet-Martin algorithm can reduce AAE and ARE by 77.88%, 68.47%, 76.15% on syn-
thetic strings datasets with size 1K, 10K, and 0.1M, compared to the original Flajolet-Martin
algorithm.

Self-collected traces As shown in Figure 4, our experimental results show that refined
Flajolet-Martin algorithm can reduce the AAE and ARE by 57.03%, 64.18%, 42.77%
on self-collected traces datasets with size 1K, 10K, and 0.1M, compared to the original
Flajolet-Martin algorithm.

Figure 6 Experimental results of refined Flajolet-Martin algorithms on Penn TreeBank

World Wide Web (2019) 22:2065–2081 2075

Figure 7 Experimental results of refined LogLog algorithms on synthetic strings

CAIDA As shown in Figure 5, our experimental results show that refined Flajolet-Martin
algorithm can reduce the AAE and ARE by 74.39%, 85.76%, 81.94% on CAIDA datasets
with size 1K, 10K, and 0.1M, compared to the original Flajolet-Martin algorithm.

Penn Treebank As shown in Figure 6, our experimental results show that refined Flajolet-
Martin algorithm can reduce the AAE and ARE by 59.36%, 68.41%, 76.03% on Penn
Treebank datasets with size 1K, 10K, and 0.1M, compared to the original Flajolet-Martin
algorithm.

4.2.2 Refined LogLog algorithm

The experimental results of Refined LogLog algorithm are shown in Figures 7, 8, 9 and 10.

Synthetic strings As shown in Figure 7, our experimental results show that refined
LogLog algorithm can reduce the AAE and ARE by 62.35%, 65.86%, 69.34% on synthetic
strings datasets with size 1K, 10K, and 0.1M, compared to the original LogLog algorithm.

Figure 8 Experimental results of refined LogLog algorithms on self-collected traces

World Wide Web (2019) 22:2065–20812076

Figure 9 Experimental results of refined LogLog algorithms on CAIDA

Self-collected traces As shown in Figure 8, our experimental results show that refined
LogLog algorithm can reduce the AAE and ARE by 77.11%, 46.05%, 33.56% on self-
collected traces datasets with size 1K, 10K, and 0.1M, compared to the original LogLog
algorithm.

CAIDA As shown in Figure 9, our experimental results show that refined LogLog algo-
rithm can reduce the AAE and ARE by 80.91%, 81.47%, 74.69% on CAIDA datasets with
size 1K, 10K, and 0.1M, compared to the original LogLog algorithm.

Penn Treebank As shown in Figure 10, our experimental results show that refined
LogLog algorithm can reduce the AAE and ARE by 7.43%, 44.68%, 4.48% on Penn
Treebank datasets with size 1K, 10K, and 0.1M, compared to the original LogLog algorithm.

Figure 10 Experimental results of refined LogLog algorithms on Penn TreeBank

World Wide Web (2019) 22:2065–2081 2077

Figure 11 Experimental results of refined HyperLogLog algorithms on synthetic strings

4.2.3 Refined HyperLogLog algorithm

The experimental results of Refined HyperLogLog algorithm are shown in Figure 11, 12,
13 and 14. We can tell that except a few exceptions, refined algorithms show a stable
improvement in accuracy compared the original algorithms.

Synthetic strings As shown in Figure 11, our experimental results show that refined
HyperLogLog algorithm can reduce the AAE and ARE by 71.29%, 42.47%, 17.75% on syn-
thetic strings datasets with size 1K, 10K, and 0.1M, compared to the original HyperLogLog
algorithm.

Self-collected traces As shown in Figure 12, our experimental results show that refined
HyperLogLog algorithm can reduce the AAE and ARE by 12.76%, 8.00%, 45.93% on

Figure 12 Experimental results of refined HyperLogLog algorithms on self-collected traces

World Wide Web (2019) 22:2065–20812078

Figure 13 Experimental results of refined HyperLogLog algorithms on CAIDA

self-collected traces datasets with size 1K, 10K, and 0.1M, compared to the original
HyperLogLog algorithm.

CAIDA As shown in Figure 13, our experimental results show that refined HyperLogLog
algorithm can reduce the AAE and ARE by 57.88%, -7.53%, -29.18% on CAIDA datasets
with size 1K, 10K, and 0.1M, compared to the original HyperLogLog algorithm.

Penn Treebank As shown in Figure 14, our experimental results show that refined Hyper-
LogLog algorithm can reduce the AAE and ARE by 19.48%, -64.92%, -192.76% on Penn
Treebank datasets with size 1K, 10K, and 0.1M, compared to the original HyperLogLog
algorithm. Note that refined HyperLogLog on CAIDA and Penn Treebank are the only two
experiments showing refined algorithm has lower accuracy than original algorithm. This
illustrates that although refined algorithms are better in most cases, we cannot guarantee
them to be always better than original ones.

Figure 14 Experimental results of refined HyperLogLog algorithms on Penn TreeBank

World Wide Web (2019) 22:2065–2081 2079

5 Conclusion

Due to the high requirement of speed and memory in network applications, estimating the
cardinality has always been a challenging and important task for algorithm scientists. The
state-of-the-art either suffers from low accuracy [8] or specific requirement for datasets
[7]. The most widely used data structures for cardinality estimating are FM algorithm [9],
LogLog algorithm [5] and HyperLogLog algorithm [10]. They are widely used in the real
networks and other applications [5, 12, 14, 15, 19, 24] , and have many variants [1, 10, 35].

Motivated by FM [9], LogLog [5] and HyperLogLog [10], we observe that the key prob-
lem is (1) the common ratio–2 is too coarse-grained for the cardinality estimation, (2) the
amendment coefficient can sometimes be highly biased. In this paper, we propose to use a
much more fine-grained common ratio to replace 2, and reach a higher accuracy and sta-
bility. We also propose to set amendment coefficient dynamically, which can accommodate
various network environments.

We perform extensive experiments and the experimental results show that refined FM,
LogLog and HyperLogLog significantly reduce the fluctuation and reach a much better
accuracy.

There are extensive work to do about refined FM, LogLog and HyperLogLog algorithms,
like more detailed mathematical analysis and further experiments. We are convinced that
refined FM, LogLog and HyperLogLog will be widely used in network applications in the
near future.

Acknowledgments This work is partially supported by Primary Research, Development Plan of China
(2016YFB1000304), National Basic Research Program of China (2014CB340405), NSFC (61672061), the
OpenProject Funding of CAS Key Lab of Network Data Science and Technology, Institute of Computing
Technology, Chinese Academy of Sciences.

References

1. Chabchoub, Y., Hébrail, G.: Sliding hyperloglog: estimating cardinality in a data stream over a sliding
window. In: IEEE International Conference on Data MiningWorkshops (ICDMW), pp 1297–1303. IEEE
(2010)

2. Dai, H., Shahzad, M., Liu, A.X., Zhong, Y.: Finding persistent items in data streams. Proc. VLDB Endow.
10(4), 289–300 (2016)

3. Dai, H., Zhong, Y., Liu, A.X., Wang, W., Li, M.: Noisy bloom filters for multi-set membership testing.
In: ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science,
pp. 139–151 (2016)

4. Dai, H., Meng, L., Liu, A.X.: Finding persistent items in distributed, datasets. In: Proceedings of the
37th Annual IEEE International Conference on Computer Communications (INFOCOM) (2018)

5. Durand, M., Flajolet, P.: Loglog counting of large cardinalities. In: European Symposium on Algorithms,
pp. 605–617. Springer (2003)

6. Estan, C., Varghese, G.: New directions in traffic measurement and accounting. ACM, 32(4) (2002)
7. Estan, C., Varghese, G., Fisk, M.: Bitmap algorithms for counting active flows on high speed links.

In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, pp. 153–166. ACM
(2003)

8. Flajolet, P.: On adaptive sampling. Computing 43(4), 391–400 (1990)
9. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base applications. J. Comput. Syst.

Sci. 31(2), 182–209 (1985)
10. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: Hyperloglog: The analysis of a near-optimal cardinality

estimation algorithm. Anal. Algor. 2007(AofA07), 127–146 (2007)
11. Garofalakis, M., Hellerstein, J.M., Maniatis, P.: Proof sketches: Verifiable in-network aggregation. In:

IEEE 23rd International Conference on Data Engineering, 2007. ICDE 2007, pp. 996–1005. IEEE (2007)

World Wide Web (2019) 22:2065–20812080

12. Han, Q., Du, S., Ren, D., Zhu, H.: Sas: a secure data aggregation scheme in vehicular sensing networks.
In: IEEE International Conference on Communications (ICC), pp. 1–5. IEEE (2010)

13. Han, J., Zheng, K., Sun, A., Shang, S., Wen, J.-R.: Discovering neighborhood pattern queries by sample
answers in knowledge base. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE),
pp. 1014–1025. IEEE (2016)

14. Heule, S., Nunkesser, M., Hall, A.: Hyperloglog in practice: Algorithmic engineering of a state of the
art cardinality estimation algorithm. In: Proceedings of the 16th International Conference on Extending
Database Technology, pp. 683–692. ACM (2013)

15. Kang, U., Tsourakakis, C.E., Appel, A.P., Faloutsos, C., Leskovec, J.: Hadi: mining radii of large graphs.
ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 8 (2011)

16. Knuth, D.E.: The art of computer programming: sorting and searching, vol. 3. Pearson Education (1998)
17. Li, Z., Xiao, F., Wang, S., Pei, T., Li, J.: Achievable rate maximization for cognitive hybrid satellite-

terrestrial networks with af-relays. IEEE Journal on Selected Areas in Communications (2018)
18. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Jurdak, R.: Bounded quadrant system: Error-bounded

trajectory compression on the go. In: IEEE 31st International Conference onData Engineering (ICDE),
pp. 987–998. IEEE (2015)

19. Lochert, C., Scheuermann, B., Mauve, M.: Probabilistic aggregation for data dissemination in vanets. In:
Proceedings of the Fourth ACM International Workshop on Vehicular ad hoc Networks, pp. 1–8. ACM
(2007)

20. Lochert, C., Rybicki, J., Scheuermann, B., Mauve, M.: Scalable data dissemination for inter-vehicle-
communication: aggregation versus peer-to-peer (skalierbare informationsverbreitung für die fahrzeug-
fahrzeug-kommunikation: Aggregation versus peer-to-peer). it-Information Technology 50(4), 237–242
(2008)

21. Lochert, C., Scheuermann, B., Mauve, M.: A probabilistic method for cooperative hierarchical aggrega-
tion of data in vanets. Ad Hoc Netw. 8(5), 518–530 (2010)

22. Open-source codes, https://github.com/spartazhihu/Fine-Grained-Probability-Counting-Algorithms
23. Penn tree bank dataset, https://catalog.ldc.upenn.edu/ldc99t42
24. Sridharan, A., Ye, T.: Tracking port scanners on the ip backbone. In: Proceedings of the 2007 Workshop

on Large Scale Attack Defense, pp. 137–144. ACM (2007)
25. Tong, Y., Chen, L., Cheng, Y., Yu, P.S.: Mining frequent itemsets over uncertain databases. Proc. VLDB

Endow 5(11), 1650–1661 (2012)
26. Tong, Y., Chen, L., Ding, B.: Discovering threshold-based frequent closed itemsets over probabilistic

data. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE), pp. 270–281. IEEE
(2012)

27. Tong, Y., Chen, L., Yu, P.S.: Ufimt: an uncertain frequent itemset mining toolbox. In: Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1508–
1511. ACM (2012)

28. Tong, Y.-X., Chen, L., She, J.: Mining frequent itemsets in correlated uncertain databases. J. Comput.
Sci. Technol. 30(4), 696–712 (2015)

29. Tong, Y., Zhang, X., Chen, L.: Tracking frequent items over distributed probabilistic data. World Wide
Web 19(4), 579–604 (2016)

30. Wang, L., Cai, Z., Wang, H., Jiang, J., Yang, T., Cui, B., Li, X.: Fine-grained probability counting.
Refined loglog algorithm. IEEE Bigcomp (2018)

31. Wei, Z., Liu, X., Li, F., Shang, S., Du, X., Wen, J.-R.: Matrix sketching over sliding windows. In:
Proceedings of the 2016 International Conference on Management of Data, pp. 1465–1480. ACM (2016)

32. Wei, S.W.S.S.Z., He, X., Xiao, X., Wen, J.R.: Topppr: top-k personalized pagerank queries with precision
guarantees on large graphs. In: SIGMOD. ACM (2018)

33. Whang, K.-Y., Vander-Zanden, B.T., Taylor, H.M.: A linear-time probabilistic counting algorithm for
database applications. ACM Trans. Database Syst. (TODS) 15(2), 208–229 (1990)

34. Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S.: Stochastic skyline route planning under time-
varying uncertainty. In: 2014 IEEE 30th International Conference on Data Engineering (ICDE), pp.
136–147 (2014)

35. Zhao, Y., Guo, S., Yang, Y.: Hermes: an optimization of hyperloglog counting in real-time data pro-
cessing. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1890–1895. IEEE
(2016)

World Wide Web (2019) 22:2065–2081 2081

https://github.com/spartazhihu/Fine-Grained-Probability-Counting-Algorithms
https://catalog.ldc.upenn.edu/ldc99t42

	Fine-grained probability counting for cardinality estimation of data streams
	Abstract
	Introduction
	Background and motivation
	Limitation of prior art and our proposed solution
	Our key contributions

	Related work
	The Flajolet-Martin algorithm
	LogLog and HyperLogLog algorithm

	Methodology
	Geometrically distributed hash functions
	Dynamic amendment coefficient
	Refined algorithms
	Refined Flajolet-Martin algorithm
	Insertion
	Query

	Refined LogLog algorithm
	Insertion
	Query

	Refined HyperLogLog algorithm
	Insertion
	Query

	Experimental results
	Experimental setup
	Basic settings
	Metrics
	Datasets

	Experimental results
	Refined Flajolet-Martin algorithm
	Synthetic strings
	Self-collected traces
	CAIDA
	Penn Treebank

	Refined LogLog algorithm
	Synthetic strings
	Self-collected traces
	CAIDA
	Penn Treebank

	Refined HyperLogLog algorithm
	Synthetic strings
	Self-collected traces
	CAIDA
	Penn Treebank

	Conclusion
	Acknowledgments
	References

