
ID Bloom Filter: Achieving Faster Multi-Set
Membership Query in Network Applications

Peng Liu1∗, Hao Wang1∗, Siang Gao1, Tong Yang1,2, Lei Zou1, Lorna Uden3, Xiaoming Li1

Peking University, China1, Collaborative Innovation Center of High Performance Computing, NUDT, China2,
School of Computing , Staffordshire University, UK3

Abstract—The problem of multi-set membership query plays a
significant role in many network applications, including routers
and firewalls. Answering multi-set membership query means
telling whether an element belongs to the multi-set, and if yes,
which particular set it belongs to. Most traditional solutions for
multi-set membership query are based on Bloom filters. However,
these solutions cannot achieve high accuracy and high speed
at the same time when the memory is tight. To address this
issue, this paper presents the ID Bloom Filter (IBF) and ID
Bloom Filter with ones’ Complement (IBFC). The key technique
in IBF is mapping each element to k positions in a filter and
directly recording its set ID at these positions. It has a small
memory usage as well as a high processing speed. To achieve
higher accuracy, we propose IBFC that records the set ID and
its ones’ complement together. The experimental results show
that our IBF and IBFC are faster than the state-of-the-art while
achieving a high accuracy.

I. INTRODUCTION

A. Background and Motivations

Given s sets without intersection, the problem of multi-
set membership query [1], [2] is to determine whether an
incoming element belongs to the multi-set, and if yes, which
set it belongs to. Multi-set membership query is a fundamental
operation in many important network applications [3]–[6].
Online membership query is often operated on large datasets
containing addresses, flow labels, signatures, etc. In a layer-
2 switch, each destination MAC address is assigned to one
unique port. When a packet is being forwarded, multi-set
membership query needs to determine which port the packet
should be forwarded to. The firewall also uses multi-set
membership query to find out the suspicious level of each
arrival packet, which is often determined by an intrusion
detection system, and then takes certain follow-up actions.

Traditional exact-match data structures address the multi-set
membership query problem, such as binary search tree and
trie, store both keys and values, thus they suffer from huge
memory and time overhead. When a low error rate is allowed,
an alternative to solve this problem is the Bloom filter [7] [8],
which is a compact probabilistic data structure that can tell

∗Corresponding author: Tong Yang (Email: yangtongemail@gmail.com).
This work was done by Peng Liu, Hao Wang and Siang Gao under the
guidance of their mentor: Tong Yang. This work is partially supported by
Primary Research& Development Plan of China (2016YFB1000304), National
Basic ResearchProgram of China (2014CB340405), NSFC (61672061), the
OpenProject Funding of CAS Key Lab of Network Data Science and Tech-
nology,Institute of Computing Technology, Chinese Academy of Sciences.

whether an element exists in a single set with no false negative.
Due to its small memory footprint and fast speed, most existing
solutions to the problem of multi-set membership query are
based on Bloom filters.

B. Limitations of Prior Art

A Bloom filter is a bit array with each bit set to 0 during
initialization. When inserting an element, it uses k hash
functions to map the element to k bits and set them to 1.
When querying an element, it hashes the element to k bits
and checks the k corresponding bits. If they are all 1, the
element is claimed to be in the set; otherwise, the element
does not belong to the set.

Combinatorial Bloom filter [9] is a typical Bloom fil-
ter based data structure for multi-set membership query,
which contains one Bloom filter B and several groups of
hash functions, and the i-th group has k hash functions
hi,1(.), hi,2(.), . . . , hi,k(.), associated with the i-th bit of the
code of set ID. Each set ID is encoded into a l-bit constant
weight code, which has a constant number of 1 bits for
different set IDs. To insert an element e with set ID Se,
if the i-th (1 6 i 6 l) bit of Se is 1, e is mapped to k
positions B[hi,1(e)], B[hi,2(e)], . . . , B[hi,k(e)], and these bits
are set to 1. To query an element e, if the bitwise AND result
of B[hi,1(e)], B[hi,2(e)], . . . , B[hi,k(e)] is 1, the i-th bit of
the estimated code is set to 1. For each query, Combinatorial
Bloom filter needs to perform k · l memory accesses, thus its
query speed is low, which will be improved by our algorithms.

C. Our Proposed Approach

In this paper, we propose the ID Bloom Filter (IBF) as well
as its enhanced version ID Bloom Filter with ones’ Comple-
ment (IBFC) to address the problem of multi-set membership
query. The key idea of IBF is to record the set membership
information directly in the mapped positions of each element.

The data structure of IBF and IBFC is composed of an
array and k independent hash functions. The initialization of
IBF and IBFC is to set all the bits in the array to 0. IBF and
IBFC both have two operations: insertion and query. We will
first present a brief introduction to the operations of IBF, and
then discuss the advantages of IBFC.

To insert an element e into IBF, we perform k hash compu-
tations and get k positions in the array. For each position, we
do a bitwise OR operation between e’s set ID and the binary
string starting from the position. To query an element e, we

978-1-5386-3180-5/18/$31.00 ©2018 IEEE
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:42:55 UTC from IEEE Xplore. Restrictions apply.

also perform k hash computations and get k positions in the
array. For each position, we retrieve a binary string, and then
AND these k binary strings to get the estimated set ID for
e. The limitations of IBF is that it may produce false results
during queries because of hash collisions, and it cannot detect
whether the query results are correct or not.

To address the limitations, we propose IBFC, which could
detect the false results and return an Error during queries
with a high possibility. IBFC improves the way of set ID
encoding. To insert an element, we concatenate its set ID and
the ones’ complement of set ID, both in binary format, and
then do bitwise OR operations at k positions to record the
set ID information. To query the membership of an element,
after computing the k positions, we retrieve k binary strings
starting from these positions, and then AND these k binary
strings to get an estimated binary string. Finally, we check the
correctness of the above binary string, and give an estimated
set ID if no Error is reported.

Key Contributions:
1) We proposed a novel Bloom filter and its enhanced

version, namely IBF and IBFC, that directly store the
set ID into each mapped positions of elements.

2) We have conducted extensive experiments with real
datasets of flow traces, and the experimental results show
that compared to the state-of-the-art, the processing
speed of IBF and IBFC is greatly higher, and IBFC can
detect more errors.

II. RELATED WORK

Many works have been conducted addressing the problem
of multi-set membership query, a large proportion of which
are Bloom filter variants, such as Summary Cache [10], Coded
Bloom Filter [11], [12], Bloomier Filter [13], [14] and Shifting
Bloom Filter [15], [16]. Those variants are discussed briefly
as follows.

Fan et al. proposed a scalable web cache sharing approach
called Summary Cache, which contains s bloom filters where
s is the number of distinct sets, and assigns each filter to a
set. During insertion, it performs k · s hash computations to
record an element, where k is the number of hash functions
for each bloom filter. During query, it also performs k · s hash
computations to query a set ID. This approach is straightfor-
ward yet inefficient in terms of speed, due to its large amount
of memory accesses.

The Coded Bloom filter and Bloomier filter are both com-
posed of multiple bloom filters. They both convert the set ID
of an element to a binary string but use different ways to
record the string. The Coded Bloom filter assigns one bloom
filter for each bit of the string. It inserts an element into
bloom filters according to the 1 bits of the string, and lookups
element by checking all the bloom filters. This approach still
has an insufficient query speed. The Bloomier filter contains
two groups of Bloom filters and performs insertions for an
element based on whether the bit of the string is 0 or 1. This
approach has a higher query speed at the cost of not supporting
dynamic insertion.

Shifting Bloom filter [16] is composed of one Bloom filter
and k hash functions, and uses offsets to record the information
of the set ID. To insert an element, it maps the element to
k positions in the bit array, offsetting the k positions by a
certain amount relevant to the set ID, and then set the k
new positions to 1. To query an element, it performs k hash
computations and checks s bits after these k positions, where
s is the number of sets. However, it still has a large number
of memory accesses.

III. DESIGN OF IBF AND IBFC

In this section, we first describe the data structure, insertion
and query operations of ID Bloom Filter (IBF), addressing its
limitations, and then discuss the operations and advantages of
an enhanced version, ID Bloom Filter with ones’ Complement
(IBFC). Table I summarizes the notations used in this paper.

TABLE I

Symbol Description
B a bit array
m number of bits in B
B[i] i-th bit in B
k number of hash functions

hj(.) j-th hash function (1 6 j 6 k)
s number of different sets
l maximum coding length of set ID
Se binary set ID of element e
Ce ones’ complement of Se

Ve bit string we record in B for element e
Ve[i] i-th bit of Ve

vi(e) an l-bit string starting from B[hi(e)]
we number of 1 bits in Se

n number of distinct elements in all sets

A. ID Bloom Filter (IBF)

Fig. 1. Insertion and query of IBF.

Data structure: The data structure of IBF is an array B
composed of m bits, the i-th of which is denoted as B[i].
IBF and IBFC are both associated with k independent hash
functions, h1(.), h2(.), . . . , hk(.), whose outputs are uniformly
distributed in range [1,m]. The initialization operation of IBF
and IBFC is to set all the bits to 0.
Insertion: To insert an element e with set ID Se,
first, e is mapped by k hash functions to k positions
B[h1(e)], B[h2(e)], . . . , B[hk(e)]. Then, for each of the k
positions B[hi(e)] (1 6 i 6 k), we perform a bitwise OR

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:42:55 UTC from IEEE Xplore. Restrictions apply.

operation between Ve and the l-bit binary string starting from
B[hi(e)], denoted as vi(e), and store the result back into the
l bit positions starting from B[hi(e)], where Ve is the binary
format of set ID Se. If hi(e) + l − 1 > m, we store the
extra bits into the first several bits of B. Specifically, we set
B[(hi(e) + j)%m] = B[(hi(e) + j)%m] OR Ve[j], 1 6 i 6
k, 0 6 j 6 l − 1, where % meas modular operation.

For example, to insert an element e with set ID Se =
9, as shown in Fig. 1, we first locate three positions by
computing h1(e), h2(e), h3(e), and the 4-bit binary strings
starting from these positions are (0100)2, (0010)2, (1110)2.
For each position, we do a bitwise OR operation between
(1001)2 and the 4-bit binary string, and record the result at
the same position. Thus, the three binary strings are changed
to (1101)2, (1011)2, (1111)2.
Query: To query the membership of an element e,
first we calculate k hash functions and locate k po-
sitions in B: B[h1(e)], B[h2(e)], . . . , B[hk(e)]. Then, we
fetch k l-bit binary strings starting from the above
k positions, denoted as v1(e), v2(e), . . . , vk(e), and AND
them together to get the result Ve. Specifically, Ve =
v1(e) AND v2(e) AND . . . AND vk(e). Finally we return Ve

as the set ID.
For example, to query an element e, as shown in Fig.

1, we first locate three positions h1(e), h2(e), h3(e), and
fetch 4-bit binary strings starting from these positions,
which are (1101)2, (1011)2, (1111)2. Then, we compute
(1101)2 AND (1011)2 AND (1111)2 and get the estimated set
ID (1001)2 = 9 for e.
Limitations: Based on the Bloom filter, a probabilistic data
structure, IBF will suffer from mis-classification and false
positive. Mis-classification means that an element from set
i is reported to be in set j, where i 6= j. False positive
means that an element that does not belong to the multi-
set is reported to be in a certain set. Those two kinds of
errors are a direct consequence of bit sharing in bloom
filters, which means a bit can be set by different elements
from different sets. Suppose we are inserting an element e
whose set ID is 18, we insert (10010)2 at k positions in
B, B[h1(e)], B[h2(e)], . . . , B[hk(e)]. Unfortunately, we set
B[(hi(e) + 1)%m] = 1 (1 6 i 6 k) during the insertion
of other elements. Therefore, we get a wrong estimated set
ID (11010)2 instead of the right one (10010)2 for e, which
is a mis-classification. Because IBF cannot detect errors, mis-
classification and false positive may occur using IBF.

B. IBF with ones’ Complement (IBFC)

Motivation: To address the limitations, especially the mis-
classification, of IBF, we propose an enhanced version of IBF,
namely the IBF with ones’ complement (IBFC). The data
structure of IBFC is the same as that of IBF, and the insertion
and query operations are changed as follows.
Insertion: The insertion of IBFC is almost the same as that
of IBF, except that Ve is the (2 · l)-bit concatenation of set
ID Se and ones’ complement of Se, both in binary format.

And when performing a bitwise OR operation, the length of
the binary string is 2 · l.
Query: The query of IBFC is almost the same as that of IBF,
except that vi(e) is a (2 · l)-bit string starting from B[hi(e)].
And after getting the bitwise AND result Ve, which is (2 · l)-bit
long, we check if the former l-bit binary string is the ones’
complement of the latter l-bit binary string. And if it is the
case, return the former l-bit binary string as the set ID; if the
bitwise OR result of the two strings has a 0 bit, report that e
does not belong to the multi-set; otherwise, return Error.
Advantages over IBF: The advantages of IBFC utilizing
ones’ complement are twofold. On the one hand, ones’ com-
plement helps us to verify the correctness of an estimated set
ID. As discussed in the limitations of IBF, mis-classification
may occur when using IBF. However, due to the ones’
complement of every set ID, when querying the membership
of an element, before returning the final result, IBFC will
check if the estimated set ID match its ones’ complement,
which will actually eliminate the problem of mis-classification
of IBF, as is proved in the next paragraph. On the other
hand, IBFC is more “fair” than IBF, regarding the elements
from different sets. In IBF, elements from different sets, when
encoded into the bit strings, will write different numbers of
1, because the binary representations of different set IDs will
have different numbers of 1. However, IBFC will concatenate
set ID and its ones’ complement, thus the number of 1 will
always be l, which is half of the length of Ve. Therefore, the
distribution of elements among the multi-set will not affect
the performance of IBFC and elements from different sets
will have the same overall accuracy. This feature helps us
to determine the memory size allocated for IBFC, which is
related to the number of bits to be set to 1 in B.
Error Types of IBFC: Mis-classification will never occur
when using IBFC. When querying an element e, we check
all bit pairs (B[(hi(e) + j)%m], B[(hi(e) + j + l)%m]) (1 6
i 6 k, 0 6 j 6 l − 1), and divide them into three cases: 1)
There are one or more (0, 0) bit pairs, IBFC claims that e
does not belong to any of the sets. 2) There are no (0, 0)
pair but one or more (1, 1) pairs. Some of the 1 bits are
wrong and IBFC claims that a conflict classification (which
will be explained below) happens. For example, we get an
estimated binary string (10110 01101)2 for e whose original
set ID is (10010)2, and we find that the 3rd bit and 8th bit of
(10110 01101)2 are both 1, but one of the two bits is supposed
to be 0, so IBFC claims that it is a conflict classification. 3)
If all pairs are (0, 1) or (1, 0), we use the number represented
by the first half of Ve as the estimated set ID for e, and the
result is correct or a false positive, but mis-classification will
not happen. Because if a collision ever happened in this case,
it must have changed a pair from (0, 0) to (0, 1) or (1, 0), and
mis-classification requires the element belongs to a certain set,
so pair (0, 0) will never exist in that case.

From the above discussion we can derive that IBFC will
suffer from conflict classification and false positives but not
from mis-classification [17]. Conflict classification means that,
when querying an element e from a certain set, IBFC cannot

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:42:55 UTC from IEEE Xplore. Restrictions apply.

definitely determine the set ID of e but can provide several
candidate sets one of which e must belong to.

IV. MATHEMATICAL ANALYSIS

A. Theoretical Analysis of IBF

Let m be the number of bits in the IBF, s be the number
of sets, c be the number of bits to represent a set ID, k be the
number of hash functions, and n be the number of inserted
elements.

Let P be the probability that the query result of any element
has one more 1 bit than the correct result, which means a
certain bit of the query result has been changed from 0 to 1
because of collision. Let ni be the size of Si, and wi be the
number of 1 bits in the binary format of set ID i, then we can
calculate that:

P = (1−
s∏

i=1

(1− wi

m
)nik)k. (1)

Proof. Let b be any of the 0 bit in B. During an insertion, the
B will be modified by k different c-bit strings. The probability
that b is covered by a c-bit string is c/m, and when it occurs,
the probability that b is set to 1 is wi/c. Therefore, the
probability that b is not set to 1 by a c-bit string is 1−wi/m,
and the probability that b is not set to 1 after all the ni elements
from Si have been inserted is (1 − wi

m)nik, considering each
element brings k c-bit strings. Thus, the probability that b is
not set to 1 after elements from s sets have all been inserted is∏s

i=1(1−
wi

m)nik. Finally, to make a query result, which is the
bitwise AND result of k binary strings, have one more 1 bit, k
corresponding bits have to be changed from 0 to 1. Therefore,
we can conclude that P = (1−

∏s
i=1(1−

wi

m)nik)k.

Let Fpr denote the probability of false positive of IBF. For
IBF, the query result of an element not belonging to any of
the sets is 0, and such an element will get a correct result if
none of the c bits in the bitwise AND result has been changed
to 1, whose probability is (1− P)c. Thus, we conclude that:

Fpr = 1− (1− P)c. (2)

Let Pmis
j be the probability of mis-classification of an

element from Sj . Mis-classification occurs when several 0 bits
of set ID j have been changed to 1 in the query result. There
are c−wj 0 bits in set ID j, and the probability that none of
them has been changed to 1 is (1 − P)c−wj . Therefore, we
can conclude that the probability of mis-classification of an
element from Sj is:

Pmis
j = 1− (1− P)c−wj . (3)

According to Eq. 2 and Eq. 3, Fpr and Pmis
j are positively

related to P . We calculate the minimum value of P in order to
minimize Fpr and Pmis

j . According to Eq. 1, P is a function
of k given s, m and ni (1 6 i 6 s). k should be set to the
following value to minimize P :

k = − ln 2

lnA
, (4)

where A =
∏s

i=1(1−
wi

m)ni .

Proof. Let A denote
∏s

i=1(1 −
wi

m)ni , and P = (1 − Ak)k.
To minimize P , we take the first-order derivative of lnP with
respect to k and get the following equation:

∂

∂k
lnP =

∂

∂k
ln ((1−Ak)k)

= ln (1−Ak)− Ak lnAk

1−Ak
.

(5)

Let the above formula be 0, and we get Ak = 1
2 , which is

also a global minimum point. Therefore, Fpr and Pmis
j are

both minimized when P is minimized with k = − ln 2
lnA .

B. Theoretical Analysis of IBFC
Use the above notations and let 2 · c be the number of bits

to represent a set ID. Same as the definition of P , let P ′ be
the probability that the query result of any element has one
more 1 bit than the correct result. Then we can conclude that:

P ′ = (1− (1− c

m
)nk)k. (6)

Proof. Similar to the proof of Eq. 1, we replace wi with c in
the calculation of P and get

P ′ = (1−
s∏

i=1

(1− c

m
)nik)k

= (1− (1− c

m
)nk)k.

(7)

Let Fpr′ be the probability of false positive of IBFC. And
we conclude that:

Fpr′ = (1− (1− P ′)2)c. (8)

Proof. IBFC reports that an element does not belong to the
multi-set when the bitwise OR result of the former c-bit and
the latter c-bit of Ve has one or more 0 bits. Therefore, false
positive happens when all the c bit pairs (Ve[j], Ve[j + c])
(0 6 j 6 c − 1) have at least one 1 bit. The probability that
(Ve[j], Ve[j + c]) remains (0,0) is (1 − P ′)2. Therefore, the
probability that all the c pairs have been changed is (1− (1−
P ′)2)c, which is exactly the probability of false positive.

The conflict classification happens when the former c-bit
string of Ve is not the ones’ complement of the latter c-bit
string of Ve, which is because one or more 0 bits of Ve have
been changed to 1. There are initially c bits that are 0 in Ve,
and the probability that none of them changed to 1 is (1−P ′)c.
Let Pcf denote the probability of conflict classification, and
we get:

Pcf = 1− (1− P ′)c. (9)

To minimize Fpr′ and Pcf , we take the derivative of lnFpr′

with respect to P ′ and get the following equation:
∂

∂P ′
lnFpr′ =

∂

∂P ′
(c ln (1− (1− P ′)2))

=
2c(1− P ′)

1− (1− P ′)2
> 0.

(10)

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:42:55 UTC from IEEE Xplore. Restrictions apply.

According to the above equation, we find that Fpr′ is min-
imized when P ′ is minimized. As for Pcf , it is minimized
when P ′ is minimized, according to Eq. 9. Therefore, we have
to find a proper value for k to minimize P ′. The derivation
process is similar to that of Eq. 4, and the value of k is:

k = − ln 2

lnA
≈ m

cn
ln 2, (11)

where A = (1 − c
m)n ≈ e−cn/m. Both Fpr′ and Pcf are

minimized when k = m
cn ln 2.

V. PERFORMANCE EVALUATION

A. Experimental Setup
Metrics: To evaluate the performance of IBF and IBFC,
we use false positive rate [18] and correct rate to measure
their accuracy, and use number of memory accesses [19] and
throughput to measure their speed.
Experimental Datasets: We use 10 sets of IP traces captured
by the main gateway of our campus as the experimental
datasets. Each flow in those IP traces is a five-tuple: source IP
address, destination IP address, source port, destination port
and the protocol type. And there are 10 million packets in
each set, representing approximately 1 million distinct flows
and divided into 255 different sets whose ID range from 1 to
255.
Implementation: We implement the insertion and query op-
erations of Coded Bloom filter, Combinatorial Bloom filter,
Shifting Bloom filter, IBF, and IBFC using C++ and use
MurmurHash3 [20], which can hash fast and uniformly, to
be their hash functions. The code length of each element is 8
bits, and in all our experiments, we allocate 6MB memory for
each Bloom filter.
Computational Platform: All the experiments are performed
on a machine with 12-core CPUs (24 threads, Intel Xeon CPU
E5-2620 @2 GHz) and 62GB total DRAM memory running
Ubuntu 14.04.

B. Accuracy

To measure the correct rate, we first insert all the flows from
one dataset into the tested Bloom filter, and then query each
flow in the tested Bloom filter and check if the query result
is equal to its real set ID. As shown in Fig. 2, the correct
rates of IBF and IBFC are high and comparable to that of
Coded Bloom filter and Shifting Bloom filter, which are all
around 95%. Combinatorial Bloom filter shows a relatively
low correct rate because it suffers from the limited memory
size provided.

To measure the false positive rate, we first insert all the
flows from one dataset into the tested Bloom filter, and then
query flows that are not in the dataset, checking if the tested
Bloom filter can correctly report that it does not belong to the
multi-set. As shown in Fig. 3, while the false positive rate of
IBF is relatively high and comparable to Coded Bloom filter,
it is still in an acceptable range, and the false positive rate
of IBFC is comparable to that of Combinatorial Bloom filter
and Shifting Bloom filter, which are all lower than 1%.

1 2 3 4 5 6 7 8 9 10
Dataset

0.80

0.85

0.90

0.95

1.00

1.05

1.10

C
or

re
ct

R
at

e

IBF
IBFC

CombBF CodedBF ShiftBF

Fig. 2. Correct Rate

1 2 3 4 5 6 7 8 9 10
Dataset

0.00

0.02

0.04

0.06

0.08

Fa
ls

e
Po

si
tiv

e
R

at
e IBF

IBFC
CombBF CodedBF ShiftBF

Fig. 3. False Positive Rate

From the experimental results on correct rate and false
positive rate, we can conclude that the performances of IBF
and IBFC are comparable to prior art in terms of accuracy.

C. Speed

In this section, we measure the speed of IBF and IBFC in
terms of number of memory accesses per insertion and query,
and query throughput. We set the number of hash functions to
3 in the following experiments.

As is shown in Fig. 4, number of memory accesses per
insertion of IBF and IBFC, which are 4 and 8 respectively,
are observably lower than that of Combinatorial Bloom filter,
Coded Bloom filter, and Shifting Bloom filter, which can be as
high as 20, which proves that the speed of IBF and IBFC is
indeed higher than the prior art in terms of number of memory
accesses per insertion.

As is shown in Fig. 5, number of memory accesses per
query of IBF and IBFC, which are 4 and 10 respectively,
are observably lower than that of Combinatorial Bloom filter,
Coded Bloom filter, and Shifting Bloom filter, which can be as
high as 30, which proves that the speed of IBF and IBFC is
indeed higher than the prior art in terms of number of memory
accesses per query.

As discussed in section III, IBF and IBFC directly record
the set ID into the Bloom filter, instead of combining different
Bloom filters. Therefore, IBF and IBFC are expected to have
a smaller number of memory accesses. More specifically,
suppose each machine word is 64 bits and can be retrieved
by one memory access. To query one element with set ID
255, 1 or 2 machine words are accessed using IBF or IBFC,
whereas 4 or 5 machine words are accessed using Shifting
Bloom filter.

As shown in Fig. 6, the throughput of IBF and IBFC, which
are 0.4 Mips and 0.3 Mips respectively, are observably higher
than that of Combinatorial Bloom filter, Coded Bloom filter,

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:42:55 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8 9 10
Dataset

0

6

12

18

24

30

M
em

or
y

A
cc

es
s

(i
ns

.) IBF
IBFC

CombBF CodedBF ShiftBF

Fig. 4. Memory Access per Insertion

1 2 3 4 5 6 7 8 9 10
Dataset

0

10

20

30

40

50

60

M
em

or
y

A
cc

es
s

(q
ue

.) IBF
IBFC

CombBF CodedBF ShiftBF

Fig. 5. Memory Access per Query

and Shifting Bloom filter, which is reasonable, since IBF and
IBFC have a smaller number of memory accesses.

1 2 3 4 5 6 7 8 9 10
Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
ue

ry
T

hr
ou

gh
pu

t(
M

ip
s)

IBF
IBFC

CombBF CodedBF ShiftBF

Fig. 6. Throughput of Query

From the above experimental results on accuracy and speed
of IBF and IBFC, we can conclude that their accuracy are
high enough, and their speed are much higher compared to
the prior art. IBF and IBFC can be applied to many practical
network applications.

VI. CONCLUSION

Multi-set membership query is a fundamental operation in
many network applications such as firewalls and switches.
In this paper, we propose a novel data structure, namely ID
Bloom filter (IBF), which only needs a small constant number
of memory accesses for each query while maintaining high
accuracy by directly recording the set IDs in a bit array. To
further improve accuracy, an enhanced version, IBF with ones’
complement (IBFC), is proposed. Extensive experimental re-
sults show that IBF and IBFC achieve a much higher speed
than the state-of-the-art. IBF and IBFC can be well applied to
many real-world network applications. All the related source
code has been released on GitHub [21].

REFERENCES

[1] Myung Keun Yoon, JinWoo Son, and Seon-Ho Shin. Bloom tree: A
search tree based on bloom filters for multiple-set membership testing.
In INFOCOM, 2014 Proceedings IEEE, pages 1429–1437. IEEE, 2014.

[2] Francis Chang, Kang Li, and Wu-chang Feng. Approximate packet
classification caching. In Proc. IEEE INFOCOM,, 2003.

[3] Andrei Broder and Michael Mitzenmacher. Network applications of
bloom filters: A survey. Internet Mathematics, 1(4):485–509, 2004.

[4] Shahabeddin Geravand and Mahmood Ahmadi. Survey Bloom filter
applications in network security: A state-of-the-art survey. Elsevier
North-Holland, Inc., 2013.

[5] Tong Yang, Gaogang Xie, YanBiao Li, Qiaobin Fu, Alex X Liu, Qi Li,
and Laurent Mathy. Guarantee ip lookup performance with fib explosion.
In Proc. ACM SIGCOMM, volume 44, pages 39–50, 2014.

[6] Tong Yang, Bo Yuan, Shenjiang Zhang, Ting Zhang, Ruian Duan,
Yi Wang, and Bin Liu. Approaching optimal compression with fast
update for large scale routing tables. In Proceedings of the 2012 IEEE
20th International Workshop on Quality of Service, page 32. IEEE Press,
2012.

[7] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[8] Yi Lu, Balaji Prabhakar, and Flavio Bonomi. Bloom filters: Design
innovations and novel applications. In 43rd Annual Allerton Conference,
2005.

[9] Fang Hao, Murali Kodialam, T. V. Lakshman, and Haoyu Song. Fast
dynamic multiple-set membership testing using combinatorial bloom
filters. IEEE/ACM Transactions on Networking, 20(1):295–304, 2012.

[10] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary
cache: a scalable wide-area web cache sharing protocol. IEEE/ACM
Transactions on Networking (TON), 8(3):281–293, 2000.

[11] Fang Hao, Murali Kodialam, T V Lakshman, and Haoyu Song. Fast
dynamic multiset membership testing using combinatorial bloom filters.
Proceedings - IEEE INFOCOM, 20(1):513–521, 2009.

[12] Sailesh Kumar and Patrick Crowley. Segmented hash:an efficient hash
table implementation for high performance networking subsystems. In
ACM/IEEE Symposium on Architecture for NETWORKING and Com-
munications Systems, ANCS 2005, Princeton, New Jersey, Usa, October,
pages 91–103, 2005.

[13] F. Chang, Wu Chang Feng, and Kang Li. Approximate caches for
packet classification. In Joint Conference of the IEEE Computer and
Communications Societies, pages 2196–2207 vol.4, 2004.

[14] Bernard Chazelle, Joe Kilian, Ayellet Tal, and Ayellet Tal. The bloomier
filter: an efficient data structure for static support lookup tables. In
Fifteenth Acm-Siam Symposium on Discrete Algorithms, pages 30–39,
2004.

[15] Tong Yang, Alex X Liu, Muhammad Shahzad, Yuankun Zhong, Qiaobin
Fu, Zi Li, Gaogang Xie, and Xiaoming Li. A shifting bloom filter
framework for set queries. Proceedings of the VLDB Endowment,
9(5):408–419, 2016.

[16] Tong Yang, Alex X Liu, Muhammad Shahzad, Dongsheng Yang,
Qiaobin Fu, Gaogang Xie, and Xiaoming Li. A shifting framework for
set queries. IEEE/ACM Transactions on Networking, 25(5):3116–3131,
2017.

[17] YuXin Liu, Anfeng Liu, Shuang Guo, Zhetao Li, Young-June Choi, and
Hiroo Sekiya. Context-aware collect data with energy efficient in cyber–
physical cloud systems. Future Generation Computer Systems, 2017.

[18] Farzaneh Sadat Tabataba and Masoud Reza Hashemi. Improving false
positive in bloom filter. In Electrical Engineering (ICEE), 2011 19th
Iranian Conference on, pages 1–5. IEEE, 2011.

[19] Jun Xu, Mukesh Singhal, and Joanne Degroat. A novel cache architec-
ture to support layer-four packet classification at memory access speeds.
In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 3,
pages 1445–1454. IEEE, 2000.

[20] Source code of the murmurhash3. https://chromium.googlesource.com/
external/smhasher/+/c2b49e0d2168979b648edcc449a36292449dd5f5/
MurmurHash3.cpp.

[21] Source code of the IBF/IBFC and related data structures. https://github.
com/BlockLiu/IDFilter.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:42:55 UTC from IEEE Xplore. Restrictions apply.

