
Fine-Grained Probability Counting: Refined LogLog
Algorithm

Lun Wang1, Zekun Cai1, Hao Wang1, Jie Jiang1, Tong Yang1,2, Bin Cui1, Xiaoming Li1

Department of Computer Science and Engineering, Peking University, China1

Collaborative Innovation Center of High Performance Computing, NUDT, China2

Email: lun.wang@pku.edu.cn

Abstract—Estimating the number of distinct flows, also called
the cardinality, is an important issue in many network applica-
tions, such as traffic measurement, anomaly detection, etc. The
challenging problem is that a high accuracy should be achieved
with line speed and small auxiliary memory. The state-of-the-art,
LogLog algorithm, uses loglogNmax memory, where Nmax is the
priori upper bound for cardinality, and achieves an accuracy
of the order of 1/

√
d, where d is the number of counters. In

this paper, we propose a refined version of LogLog algorithm,
namely Refined LogLog. It achieves a much better accuracy
than the original LogLog algorithm by using more fine-grained
common ratios. The algorithm is validated by a detailed analysis.
A self-adaptive version, Self-Adaptive LogLog, is also proposed
based on Refined LogLog, to adapt to cardinalities of different
scales automatically. Our experimental results show that Refined
LogLog outperforms LogLog in accuracy by up to 67.0%, and
reduces the standard deviation by up to 60.8%.

Index Terms—cardinality estimation; network monitoring

I. INTRODUCTION

A. Background
Determining the number of distinct items, namely cardinali-

ty, is an important issue in many network applications, such as

traffic management [1], [2], anomaly detection [3], etc. Many

database applications, such as database query optimization [4],

require fast and accurate estimation of cardinality as well.

There are mainly two kinds of algorithms for cardinality

estimation. The first kind of algorithms is based on packet
sampling (e.g. Adaptive Sampling [5]). However, these algo-

rithms suffer from low accuracy and are unacceptable in fine-

grained applications. The second kind of algorithms is based

on probabilistic counting. One of the earliest probabilistic

counting algorithms is Linear Counting [6], proposed by

Whang, Zanden, and Taylor. But its requirement for linear s-

pace makes it unpractical in real networks, especially when the

cardinality to record is large. Multiresolution Bitmap [7] and

Adaptive Bitmap [7] are refined versions of Linear Counting

and both achieve higher accuracy. However, Multiresolution

Bitmap requires large space, and Adaptive Bitmap has many

restrictions on the target datsets.

∗Corresponding author: Tong Yang (Email: yang.tong@pku.edu.cn). This
work was done by Lun Wang, Zekun Cai, and Hao Wang under the guidance of
their mentor: Tong Yang. This work is partially supported by Primary Research
& Development Plan of China (2016YFB1000304), National Basic Research
Program of China (2014CB340400), NSFC (61472009, 61672061), the Open
Project Funding of CAS Key Lab of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences.

Flajolet and Martin proposed another algorithm, namely

Flajolet-Martin sketch [4], using d bitmaps, each of logNmax

bits, to record estimated cardinality, and reaches a standard

deviation close to 0.78/
√
d. In order to achieve a high accu-

racy, d should be large, and d logNmax bits is costly for the

limited memory in routers or switches. This limitation of FM

Sketch motivates another more memory-efficient algorithm

called LogLog [8], in which each counter only takes up

log logNmax bits. However, this algorithm can only reach a

standard deviation close to 1.30/
√
d. Detailed descriptions of

these two algorithms are given in Section II.

B. Limitation and Proposed Solution
From the above discussion, we can see that these methods

either suffer from low accuracy or high memory requirement.

The key observation is that for FM sketches and LogLog, there

are huge memory wastes, because cardinality does not reach

220 or more so the high bits of 32-bit bitmaps or 8-bit counters

are not necessarily required (more details are provided in

Section II). However, these bits are still there to cater to the

8-bit computer architecture to make the data structures faster.

The key problem lies in the fact that common ratio 2 used by

the FM Sketch and LogLog algorithm is coarse-grained. The

counters can only record 1, 2, 4, · · · , which we call recordable

numbers. It not only leads to the waste of memory, but causes

a poor stability and low accuracy as well, because when the

cardinality is large, the gaps between the accurate numbers

and the recordable numbers will be large. For a LogLog with

d = 64, it can only guarantee an approximate error of 16.25%.

For a LogLog with d = 32, it can hardly guarantee any

approximate error. To address this issue, we propose a refined

version of LogLog algorithm, namely Refined LogLog in this

paper, which can reach a 67% better accuracy than the original

version. It uses a fine-grained common ratio like 4/3 or 8/7
to narrow the gaps between two recordable values.

Another problem facing LogLog is that we need to know

a priori upper bound of cardinality to help us choose the

appropriate size of bitmaps. In real-world networks, we do not

have the knowledge in most cases. In this paper, we propose

a Self-Adaptive LogLog which can adapt to the cardinality by

changing its common ratio dynamically, and thus get rid of

the priori knowledge. It provides a high accuracy when the

cardinality is small and is capable of storing large cardinality

as well.

176

2018 IEEE International Conference on Big Data and Smart Computing

2375-9356/18/$31.00 ©2018 IEEE
DOI 10.1109/BigComp.2018.00034

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:30:17 UTC from IEEE Xplore. Restrictions apply.

Contributions:
• We propose two ideas: (1) narrowing the intervals of

LogLog algorithm by using a geometrically hash functions

with smaller common ratio, (2) constructing a LogLog al-

gorithm which can adapt to cardinality dynamically.

• We implement a C++ library of Refined LogLog and Self-
Adaptive LogLog. The source codes are released at GitHub

[9].

• We do an exhaustive mathematical analysis of Refined
LogLog and prove that Refined LogLog is better than

LogLog theoretically in terms of accuracy and stability.

• We perform extensive experiments using real-world network

traces to test the performance of Refined LogLog and Self-
Adaptive LogLog in terms of accuracy and stability.

II. RELATED WORK

A. Flajolet-Martin Sketch
Flajolet and Martin proposed a classic algorithm for ap-

proximate cardinality counting, namely FM sketch [4]. FM

sketches are widely used in network applications to count

flow numbers, such as data dissemination [10], [11] and

probabilistic aggregation [12], [13].

As shown in Figure 1, an FM sketch is composed of d
bitmaps and each bitmap has w bits. The ith bitmap is denoted

by Ai and the jth bit of Ai is denoted by Ai[j]. Each bitmap

Ai is associated with an independent hash function hi(.).
Specially, hi(.) maps half of all items to the least significant

bit of the ith array, a quarter to bit 1, and so on. The

concrete method to generate such geometrically distributed

hash functions is discussed in subsection III-A. For each item

e, the FM sketch computes d hash functions hi(e) and sets

Ai[hi(e)%w] to 1. To answer a query, FM sketch returns

1.2928 × 2
1
d

∑d−1
i=0 Li , where Li denotes the lowest bit with

value 0, as derived in [4].

0 10 1 00 1 1

0 10 0 10 1 1

0 10 0 01 1 1

e
h1

h2
h3

1

1

1

0.50.250.125Map
Probability

00 0000 0 00
h1

0000 0 00 000 0 0h2
h3

0 0 0h2 0 0 0h2 0 0 00 0 0

Fig. 1: Structure of a FM Sketch.

B. LogLog Sketch
Durand and Flajolet proposed another classic algorithm,

namely LogLog algorithm [8], for cardinality estimation. The

auxiliary memory required is extremely small, in the order of

log logNmax. Nmax is a priori upper bound on cardinality.

As shown in Figure 2, LogLog uses d counters and each

counter has w ≈ log logNmax bits. The ith counter is denoted

by A[i]. There is only one hash function h(.). The complete

hash value of item e is denoted by h(e). The lowest k = log d
bits of h(e) is denoted by hl(e) and is used to locate a counter.

h(e) is also used to generate geometrically distributed hash

values l2(h(e)), through the method discussed in subsection

III-A. Then A[hl(e)] is set to max{A[hl(e)], l2(h(e))}. To

answer a query, LogLog returns αdd2
1
d

∑
A[i], where αd :=

(Γ (−1/d) 1−21/d

log 2)−d and Γ (s) := 1
s

∫∞
0

e−ttsdt, as derived

in [8].

e h 101000

3

4

4

5

10
w bits

k bitsw-k bits
01
10

11

4

00
01
00
01
10

1111

01
10000
0101

Fig. 2: Structure of LogLog.

There are many other data structures which can also be

used to augment cardinality extimation such as bloom filter

[14], [15], pyramid sketch [16], and cold filter [17], but they

are quite different from Refined LogLog so we do not find

them comparable.

III. METHODOLOGY

In this section, we give a detailed description of Refined
LogLog and Self-Adaptive LogLog. First, we introduce the

concrete method to generate geometrically distributed hash

functions with arbitrary common ratios. Second, we propose

the Refined LogLog algorithm, which uses more fine-grained

common ratio and gives more accurate estimation of cardinali-

ty. Third, we propose a dynamic version of LogLog algorithm,

namely Self-Adaptive LogLog which can adapt to different

scales of cardinalities without a priori knowledge about upper

bound. The symbols we use is defined in Table I.

TABLE I: Symbols used in Section III and IV

Symbol Description
d # of bitmaps or counters.
w # of bits of a bitmap or a counter.
r rate used in Refined LogLog and Self-Adaptive LogLog.
μ r/(r − 1)
e An element inserted or queried.

h(e) Uniformly distributed hash function.
udhv uniformly distributed hash value.
gdhv geometrically distributed hash value.

A[i] the ith counter in Refined LogLog or Self-Adaptive LogLog.
esti Estimated cardinality.
n # of Incoming Elements.

∗(i, n, x) i1 + i2 + · · ·+ in = x
[zn]f(z) The coefficient of zn term in f(z).

γe Euler’s constant.
// division operation. The result is truncated to integer.

A. Geometrically Distributed Hash Functions
The most widely used hash functions are uniformly dis-

tributed hash functions. These hash functions map the input

strings to nearly uniformly distributed binary strings. It is

theoretically impossible to find a hash function mapping

nonuniform inputs into uniform outputs. But in practice, we

can easily find one that is close enough [18].

In cardinality counting algorithms, a geometrically dis-

tributed hash function is frequently required. In FM Sketch

177

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:30:17 UTC from IEEE Xplore. Restrictions apply.

and LogLog, a geometrically distributed hash function with a

common ratio of 1/2 is generated by the Algorithm 1.

Algorithm 1: Geometrically Distributed Hash Function

with Common Ratio 1/2

1 Function Ghash1/2(e):
2 udhv = h(e);

3 gdhv = the lowest bit’s position of udhv with value 1;

4 return gdhv;

5 end

We extend the algorithm to generate geometrically distribut-

ed hash functions with more choices of common ratio. For

a binary string, we define Lowbit(x, i) in Algorithm 2. We

use Lowbit(x, i) to replace finding the lowest bit operation in

Algorithm 1, and get the extended algorithm 3. We can see that

P{Ghash(e, i) = v} = (1− 1/i)v , so we get a geometrically

distributed hash function with common ratio 1− 1/i. We can

set the i and get different common ratios.

Algorithm 2: Subroutine of Geometrically Distributed

Hash Function

1 Function Lowbit(x, r):
2 res = 0;

3 while x%r!=0 do
4 x = x/r;

5 ++res;

6 end
7 return res;

8 end

Algorithm 3: Geometrically Distributed Hash Function

with More Choices of Common Ratio

1 Function Ghash(e, r):
2 udhv = h(e);

3 gdhv = Lowbit(udhv, r);

4 return gdhv;

5 end

One problem with function Lowbit(x, i) is that the modulo

operation is time-consuming and may become a bottleneck for

Ghash(e, i). However, if we pick i as 2k, then we can use

shift operation to replace the modulo operation and get an

accelerated version of Lowbit(x, i). Thus, we choose to use

hash functions with common ratio as 1− (1/2)k in this paper.

B. Refined LogLog Algorithm
Hyper-parameters: Refined LogLog is composed of counters

initialized to 0. To initialize a Refined LogLog, three parame-

ters need tp be determined: 1) the number of counters: d; 2)

the size of each counter in terms of bits: w; 3) the rate: r.

The selection of these parameters will determine the capacity,

accuracy and memory efficiency of the Refined LogLog.

Insertion: As shown in Algorithm 4, when an item e is

inserted, we calculate the hash value h(e). We use h(e)%d to

locate a counter. If Ghash(h(e)//d) is larger than the counter

value, the counter value will updated to Ghash(h(e)//d).
Otherwise, the counter will keep its value.

Query: As defined in Algorithm 4, when answering a query,

Refined LogLog will return αd,rd(
r

r−1)
1
d

∑
A[i], where αd,r :=

(Γ (−1/d)
1−(r

r−1)
1/d

log r
r−1

)−d and Γ (s) := 1
s

∫∞
0

e−ttsdt. The

detailed derivation is given in Section IV.

Algorithm 4: Refined LogLog

1 struct {
2 counter A[d];

3 int r;

4 Function Insert(e):
5 udhv = h(e);

6 index = udhv % d; gdhv = Ghash(udhv//d, r);

7 A[index] = max{A[index], gdhv};

8 end
9 Function Query():

10 float sum = 0;

11 for i in d do
12 sum = sum + A[i];

13 end
14 return αd,rdr(

r
r−1)

sum;

15 end
16 } RefinedLogLog;

C. Self-Adaptive LogLog

Hyper-parameters: To initialize a Self-Adaptive LogLog, four

parameters need to be determined: 1) the number of counters:

d; 2) the size of each counter in terms of bits: w; 3) initial

rate: r 4) evolving step size: s.

Insertion: As shown in Algorithm 5, the insertion procedure

is similar to Refined LogLog. The differences are that it uses

an adaptive rate, and when a counter overflows, Self-Adaptive
LogLog needs to evolve to a new rate to expand the capacity.

Query: The query procedure is similar to Refined LogLog,

using current value of the adaptive rate.

Evolve: Overflow happens when, during an insertion, the

inserted counter cannot hold the new value. This phe-

nomenon indicates that the capacity of the current Self-
Adaptive LogLog is not big enough to record the cardinality.

To address this issue, we propose an “evolve operation”. When

evolving, the rate of Self-Adaptive LogLog is reduced by

s, thus increasing the capacity. Then we need to store the

previously recorded cardinality into the evolved Self-Adaptive
LogLog. We first execute a query operation before evolution

and get the estimated cardinality: esti. Assuming the rate

before evolution is r, we can easily find the integer: γ, which

satisfies (r
r−1)

γ−1 ≤ esti ≤ (r−s
r−1−s)

γ . Then it solves the

equation group:

178

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:30:17 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5: Self-Adaptive LogLog

1 struct {
2 counter A[d];

3 int r;

4 int s;

5 Function Insert(e):
/* Same as RefinedLogLog 4 */

6 · · · ;

7 if any counter overflows then
8 Evolve();

9 end
10 end
11 Function Query():

/* Same as RefinedLogLog 4 */
12 · · · ;

13 end
14 Function Evolve():
15 r = r - s;

16 int estimate = Query();

17 Solve the corresponding equation group 1;

18 Set the counters as the roots;

19 end
20 } SelfAdaptiveLogLog;

{
x(r

r−1)
γ−1 + y(r−s

r−1−s)
γ = esti

x+ y = 1
(1)

We have to use σ/d and 1 − σ/d (σ = 0, 1 · · · d) to

approximate x and y, so we can randomly set σ counters to

γ − 1 and the other counters to γ. For example, to store 7 in

a Refined LogLog with 32 counters and the common ratio of

4/3. We set 8 counters to 6 and 24 counters to 7. Figure 3

shows the complete evolving operation.

esti = 2.54
21<2.54<22

2x+4y=2.54
x+y=1

x=0.73≈ 3/4, y=0.27≈ 1/4

r=4

4 3 3 3

r=2

1 1 2 1

Evolve
step size = 2

Counters

Counters

Fig. 3: An Evolving Process.

IV. ANALYSIS

In this section, we give a detailed derivation of the expecta-

tion and standard deviation of Refined LogLog. The derivation

is inspired by [8]. We also give a rough discussion about

the evolving operation and its influence on the accuracy.

The theoretical analysis shows that Refined LogLog not only

outperforms LogLog by an exponential ratio in terms of

accuracy, but are more stable in terms of standard deviation.

A. Preliminary Knowledge
Poissonization and Depoissonization: Poissonization is a

calculating technique, using Poisson process to replace the

original input. During the replacement, a sequence character-

izing the Bernoulli model is mapped to a complex variable’s

generating function, which characterizes the Poisson model.

In Refined LogLog’s derivation, we first solve the problem in

the Poisson domain. Then it is depoissonized to transform the

results back to the original Bernoulli model. We refer readers

interested in Poissonization and Depoissonization to [19].
Mellin Transform The Mellin transform [20], [21] associated

with a function f(x) is defined as the complex function f ∗(s)
where f∗(s) = ∫∞

0
f(x)xs−1dx, and it lies in the positive real

domain. The major application of the Mellin transform is to

calculate the asymptotic analysis of sums obeying the general

pattern G(x) =
∑
k

λkg(μkx), which are called harmonic sums

connected to the expression
∫∞
0

λ(κ)g(μ(κ)x)dκ. In Refined
LogLog’s derivation, Mellin transform is used to calculate

asymptotic analysis of expectation and standard deviation of

the estimated value.

B. Theoretical Analysis for Refined LogLog
Theorem 4.1: The asymptotic expectation εn and standard

deviation νn of Refined LogLog is shown as below. n is the

total number of incoming elements, and μ = r/(r − 1)

εn = (r − 1)nΓ (
−1

d
)(
1− μ

1
d

logμ
)−d

νn =(r − 1)2n2[(
logμ

Γ (−2
d)μ

2
d)

)d − (
logμ

Γ (−1
d)(1− μ

1
d)

)2d]

Theorem 4.1 points out that the expectation of Refined
LogLog is unbiased and the standard deviation (1.06/

√
d when

rate = 4, common ratio = 3/4) is theoretically smaller than

LogLog with standard deviation of 1.30/
√
d.

We define Z := dμ
1
d

∑
j M(j)

. En(Z) represents the expec-

tation of it, and Vn(Z) represents the variance of it. According

to the definition of expectation, we get the following equation.

En(Z) =
∑
k

(dμ
k
dP (

∑
j

M (j) = k)) (2)

When a counter receives an element, suppose the corre-

sponding hash value is Y, then we know P (Y ≤ k) = 1
μk−1 .

When a counter receives v elements, we define the maximum

hash value of the v elements as M . Because hash values of

v elements are supposed to be independent, Pν(M ≤ k) =
(1− 1

μk)
ν . Then we get Pν(M = k) = (1− 1

μk)
ν−(1− 1

μk−1)
ν .

The bivariate expotential generative function of Pν(M = k)
is G(z, u).

G(z, u) : =
∑
v,k

Pν(M = k)uk z
ν

ν!

=
∑
k

uk(ez(1−μ−k) − ez(1−μ1−k))
(3)

The probability expression in 2 can be derived as following.

For convenience, we use the notation ∗(i, n, x) to represent

i1 + i2 + · · ·+ in = x.

179

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:30:17 UTC from IEEE Xplore. Restrictions apply.

P (
∑
j

M (j) = k)

=
1

dn

∑
∗(i,d,n)

∑
∗(j,d,k)

n!

i1!i2!..id!
(

d∏
l=1

Pil(M = jl))

(4)

Then we use the bivariate exponential generating function

to calculate the combination of d counters. [zn]f(z) represents

the coefficient of zn term in f(z).

G(z, u)d =
∑
ν,k

∑
∗(i,d,ν)

∑
∗(j,d,k)

d∏
l=1

Pil(M = jl)u
jl
zjl

il!

=
∑
ν,k

(
∑
∗(i,d,ν)

∑
∗(j,d,k)

d∏
l=1

Pil(M = jl)
1

il!
)ukzν

[zn]G(
z

d
, u)d =

∑
k

∑
∗(i,d,n)

∑
∗(j,d,k)

d∏
l=1

Pil(M = jl)
1

il!
uk 1

dn

(5)

According to Equation 2, 5, 4, we can finally get the

expression of expectation.

En(Z) = dn![zn]G(
z

d
, μ

1
d)d (6)

In the same way , we can get the expectation of Z2.

En(Z
2) = d2n![zn]G(

z

d
, μ

2
d)d (7)

Then we can get the variance of Z.

Vn(Z) = EnZ
2 − (EnZ)2

= d2n![zn]G(
z

d
, μ

2
d)d − (dn![zn]G(

z

d
, μ

1
d)d)2

(8)

Then we use Poisson model [19] and Mellin transform [20]

to get the calculable asymptotic expression of En(Z) and

Vn(Z). Suppose f(z) :=
∑
n
En(Z) z

n

n! , then εn := e−λf(λ) =∑
λ∈N

En(Z)e−λ λn

n! gives the corresponding expectation under

Poisson model, which means that En(Z) ∼ εn. According to

the definition of εn, we can find that εn = dG(nd , μ
1
d)de−n.

In the same way, Vn(Z) ∼ νn := d2G(nd , μ
2
d)de−n −

(dG(nd , μ
1
d)de−n)2.

According to the Mellin transform [20], when n → ∞,

εn = [(Γ (
−1

d
)
1− μ

1
d

logμ
)−d + εn] · n

νn = [(Γ (
−2

d
)
1− μ

2
d

logμ
)−d − (Γ (

−1

d
)
1− μ

1
d

logμ
)−2d + ηn] · n2

(9)

|εn| and |ηn| are bounded by 10−6 so we can ignore them.

Define αd,r := (Γ (−1
d) 1−(1/r)

1
d

log 1/r)−d = e−γe
√
r − (1rπ

2 +

log2 1
r)/(24

d
r) (γe is Euler’s constant). When n → ∞,

1
nEn(E) = 1

nEn(Z)/αd,r = 1 + θ1,n,r + o(1), where

|θ1,n,r| < 10−6, and
√

1
nVn(E) =

βd,r√
d
+ θ2,n,r + o(1), where

|θ2,n,r| < 10−6.

νn = (Γ (
−2

d
)
1− α

2
d

logα
)−d − (Γ (

−1

d
)
1− α

1
d

logα
)−2d

= (Γ (
−1

d/2
)
1− α

1
d/2

logα
)−2(d/2) − (Γ (

−1

d
)
1− α

1
d

logα
)−2d

= α2
d/2,1/α − α2

d,1/α
(10)

Suppose A = e−γe
√
r, and B = (π

2

r + log2 1
r)/24,

we get βd,r =
√
2B − 3B2

A d, when n → ∞. β∞,r =√
(π

2

r + log2 1
r)/12. When r = 3/4 and r = 1/2, β∞,r ≈

1.06 < 1.30.

The last tricky part is that the geometrically hash functions

we use to generate a geometrically distributed array has a first

term 1−μ different from common ration μ, However, this can

be easily dealt with if we consider the array as a geometrically

distributed array with μ as both first term and common ratio

times a constant r − 1. Then we can get the final asymptotic

expectation and variance as shown in 4.1.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Metrics: We define four metrics to evaluate our algorithm’s

performances.

• AAE: Average absolute error, defined as the average value

of absolute error over the dataset number, where absolute

error is the absolute value of the difference between accurate

value and estimated value.

• ARE: Average relative error, defined as the average value of

relative error over the dataset number, where relative error is

the absolute value of the difference between accurate value

and estimated value divided by the accurate value.

• Insertion Time: defined as the total time of all insertion

operations for a data set.

• Capacity: defined as the maximal cardinality of different

elements a data structure can record.

Traffic Traces: The traffic traces used in the experiments

are collected from a tier-1 router. We identify flows using

the standard 5-tuple. The traces approximately obey zipfian

distributions [22]. The elements in the context is the coming

packets, and the cardinality is the distinct flow number. There

are 7 sets of traces, having 0.01M, 0.02M,0.04M, 0.08M,

0.16M, 0.32M, 0.64M incoming packets.

B. Experimental Results
ARE: As shown in Figure 4(a), our experimental results show

that Refined LogLog can reduce the ARE by [19.6%, 67.5%],
with a mean of 44.1%, compared to the LogLog. It also reduces
the standard deviation of ARE by up to 60.8%, with a mean
of 33.6%. The results of relative error of each trace in the 7

sets are shown in Figure 4(b) to 4(h). We can see that Refined
LogLog outperforms LogLog in most of the traces no matter

what the trace size is.

180

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:30:17 UTC from IEEE Xplore. Restrictions apply.

0.01 0.02 0.04 0.08 0.16 0.32 0.64
(M)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
R

E

LogLog

RefinedLogLog

(a) Summary of ARE Experiments

0 10 20 30 40 50

Trace No.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
el

at
iv

e
E

rr
o
r LogLog

RefinedLogLog

(b) Relative Error of 0.01M Traces

0 10 20 30 40 50

Trace No.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
E

rr
o
r LogLog

RefinedLogLog

(c) Relative Error of 0.02M Traces

0 10 20 30 40 50

Trace No.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
E

rr
o
r LogLog

RefinedLogLog

(d) Relative Error of 0.04M Traces

0 10 20 30 40 50

Trace No.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
E

rr
o
r LogLog

RefinedLogLog

(e) Relative Error of 0.08M Traces

0 10 20 30 40 50

Trace No.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
E

rr
o
r LogLog

RefinedLogLog

(f) Relative Error of 0.16M Traces

0 10 20 30 40 50

Trace No.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
E

rr
o
r LogLog

RefinedLogLog

(g) Relative Error of 0.32M Traces

0 10 20 30 40 50

Trace No.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
E

rr
o
r LogLog

RefinedLogLog

(h) Relative Error of 0.64M Traces

Fig. 4: Relative Error Experimental Results on 7 Set of Traces.

0.0 0.02 0.04 0.08 0.16 0.32 0.64
(M)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

A
A

E

LogLog

RefinedLogLog

(a) Summary of AAE Experiments

0 10 20 30 40 50

Trace No.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

E
rr

o
r LogLog

RefinedLogLog

(b) Absolute Error of 0.01M Traces

0 10 20 30 40 50

Trace No.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

E
rr

o
r LogLog

RefinedLogLog

(c) Absolute Error of 0.02M Traces

0 10 20 30 40 50

Trace No.

0
1600
3200
4800
6400
8000
9600

11200
12800
14400
16000

E
rr

o
r LogLog

RefinedLogLog

(d) Absolute Error of 0.04M Traces

0 10 20 30 40 50

Trace No.

0
2400
4800
7200
9600

12000
14400
16800
19200
21600
24000

E
rr

o
r LogLog

RefinedLogLog

(e) Absolute Error of 0.08M Traces

0 10 20 30 40 50

Trace No.

0
4800
9600

14400
19200
24000
28800
33600
38400
43200
48000

E
rr

o
r LogLog

RefinedLogLog

(f) Absolute Error of 0.16M Traces

0 10 20 30 40 50

Trace No.

0
6400

12800
19200
25600
32000
38400
44800
51200
57600
64000

E
rr

o
r LogLog

RefinedLogLog

(g) Absolute Error of 0.32M Traces

0 10 20 30 40 50

Trace No.

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

E
rr

o
r LogLog

RefinedLogLog

(h) Absolute Error of 0.64M Traces

Fig. 5: Absolute Error Experimental Results on 7 Set of Traces.

0.0 0.2 0.4 0.6 0.8 1.0
Relative Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

C
D

F

LogLog

Refined LogLog

(a) CDF of Relative Error

0 20000 40000 60000 80000 100000

Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

C
D

F

LogLog

Refined LogLog

(b) CDF of Absolute Error

0.01 0.02 0.04 0.08 0.16 0.32 0.64
Trace Size (M)

0

200

400

600

800

In
se

rt
io

n
(s

)

HashTable

LogLog

Refined LogLog

(c) Insertion Time v.s. #Packets

0.01M0.02M0.04M0.08M0.16M0.32M0.64M
Capacity

0
50

100
150
200
250
300
350
400
450
500

SALL

RLL (4/3)

RLL (8/7)

RLL (16/15)

(d) Counter Size v.s. Capacity

Fig. 6: Experimental results of CDF, Insertion Time and Capacity.

AAE: As shown in Figure 5(a), our experimental results show

that Refined LogLog can reduce the AAE by [19.7%, 67.6%],
with a mean of 44.2%, compared to the LogLog. It also reduces
the standard deviation of ARE by up to 61.0%, with a mean
of 30.0%. The results of absolute error of each trace in the 7

sets are shown in Figure 5(b) to 5(h). We can see that Refined
LogLog outperforms LogLog in most of the traces no matter

what the trace size is.

The above two sets of experimental results show that

Refined LogLog can bring stable improvements in terms of

relative error, absolute error, and standard deviation of the

estimation, regardless of the dataset size, which conforms

with the theoretical analysis. This characteristic indicates that

Refined LogLog can provide a high accuracy in real-world

network environment with different scales of cardinality.

CDF: As shown in Figure 6(a), over 80% of Refined LogLog’s
estimated cardinality have a relative error which is smaller
than 0.25, while the statistical quantity drops sharply to 20%
using LogLog. As shown in Figure 6(b), over 79% of Refined
LogLog’s estimated cardinality have a absolute error which is
smaller than 10000, while the statistical quantity drops sharply
to 55% using LogLog.

We can see that Refined LogLog is more stable than

LogLog because more estimated cardinalities have smaller

errors. This conforms with the theoretical analysis.

Total Insertion Time vs. Dataset Size: As shown in Figure

6(c), Refined LogLog can provide a stable speedup of 78%
compared with classic hash table and 35.5% compared with
LogLog . This result indicates that our Refined LogLog fits the

high-speed network environment as well.

181

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:30:17 UTC from IEEE Xplore. Restrictions apply.

Counter Size vs. Capacity: As shown in Figure 6(d), our
Self-Adaptive LogLog can store a cardinality of 0.64M with
less than 16 bits, while Refined LogLog will take up to 200
bits. The numbers between the legends are common ratio

used by Refined LogLog. The result shows that Self-Adaptive
LogLog has a far bigger capacity and can adapt to various

network environments.

VI. CONCLUSION

Due to the high requirement of speed and memory in

network applications, estimating the cardinality has always

been a challenging and important task for algorithm scientists.

The state-of-the-art either suffers from low accuracy [5] or

specific requirement for datasets [7]. The most widely used

data structures for cardinality estimating is FM Sketch [4],

LogLog [8]. They are widely used in the real networks and

other applications [23]–[28] , and have many variants [2], [29],

[30].

Motivated by FM Sketch [4] and LogLog [8], we observe

that the key problem is the common ratio–2 is too coarse-

grained for the cardinality estimation. In this paper, we propose

to use a much more fine-grained common ratio to replace

2, and reach a higher accuracy and stability. We also pro-

pose Self-Adaptive LogLog, which can accommodate various

network environments. We do an exhaustive analysis of Re-
fined LogLog , and the theoretical results show that Refined
LogLog beats LogLog in terms of accuracy and stability. We

also give a rough discussion about the mathematical properties

of Self-Adaptive LogLog, but more detailed work about it

needs to be done. We perform extensive experiments and the

experimental results show that Refined LogLog significantly

reduces the fluctuation and reach a much better accuracy.

Furthermore, Refined LogLog is also faster in insertion by

approximately 35% than LogLog, which fits well with the

high-speed network environments. There are extensive work

to do about Refined LogLog and Self-Adaptive LogLog, like

more detailed mathematical analysis and further experiments.

We are convinced that Refined LogLog and Self-Adaptive
LogLog will be widely used in network applications in the

near future.

REFERENCES

[1] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” in Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement. ACM, 2003, pp. 153–
166.

[2] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm,” in Analysis
of Algorithms 2007 (AofA07), 2007, pp. 127–146.

[3] C. Estan and G. Varghese, New directions in traffic measurement and
accounting. ACM, 2002, vol. 32, no. 4.

[4] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Journal of computer and system sciences, vol. 31,
no. 2, pp. 182–209, 1985.

[5] P. Flajolet, “On adaptive sampling,” Computing, vol. 43, no. 4, pp. 391–
400, 1990.

[6] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-
time probabilistic counting algorithm for database applications,” ACM
Transactions on Database Systems (TODS), vol. 15, no. 2, pp. 208–229,
1990.

[7] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” in Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement. ACM, 2003, pp. 153–
166.

[8] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in
European Symposium on Algorithms. Springer, 2003, pp. 605–617.

[9] “Source code for refined loglog,” https://github.com/spartazhihu/
Refined-LogLog.

[10] C. Lochert, B. Scheuermann, and M. Mauve, “Probabilistic aggregation
for data dissemination in vanets,” in Proceedings of the fourth ACM
international workshop on Vehicular ad hoc networks. ACM, 2007,
pp. 1–8.

[11] C. Lochert, J. Rybicki, B. Scheuermann, and M. Mauve, “Scal-
able data dissemination for inter-vehicle-communication: Aggrega-
tion versus peer-to-peer (skalierbare informationsverbreitung für die
fahrzeug-fahrzeug-kommunikation: Aggregation versus peer-to-peer),”
it-Information Technology, vol. 50, no. 4, pp. 237–242, 2008.

[12] C. Lochert, B. Scheuermann, and M. Mauve, “A probabilistic method
for cooperative hierarchical aggregation of data in vanets,” Ad Hoc
Networks, vol. 8, no. 5, pp. 518–530, 2010.

[13] M. Garofalakis, J. M. Hellerstein, and P. Maniatis, “Proof sketches:
Verifiable in-network aggregation,” in Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on. IEEE, 2007, pp. 996–
1005.

[14] T. Yang, A. X. Liu, M. Shahzad, D. Yang, Q. Fu, G. Xie, and X. Li, “A
shifting framework for set queries,” Transactions on Networking, 2017.

[15] T. Yang, A. X. Liu, M. Shahzad, Y. Zhong, Q. Fu, Z. Li, G. Xie, and
X. Li, “A shifting bloom filter framework for set queries,” VLDB, 2016.

[16] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: A sketch
framework for frequency estimation of data streams,” VLDB, 2017.

[17] Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig,
“Cold filter: A meta framework for faster and more accurate stream
processing,” SIGMOD, 2018.

[18] D. E. Knuth, The art of computer programming: sorting and searching.
Pearson Education, 1998, vol. 3.

[19] W. Szpankowski, “Analytic poissonization and depoissonization,” Aver-
age Case Analysis of Algorithms on Sequences, pp. 442–519, 2001.

[20] P. Flajolet, X. Gourdon, and P. Dumas, “Mellin transforms and asymp-
totics: Harmonic sums,” Theoretical computer science, vol. 144, no. 1-2,
pp. 3–58, 1995.

[21] B. Epstein, “Some applications of the mellin transform in statistics,” The
Annals of Mathematical Statistics, pp. 370–379, 1948.

[22] D. M. Powers, “Applications and explanations of zipf’s law,” in Proceed-
ings of the joint conferences on new methods in language processing and
computational natural language learning. Association for Computa-
tional Linguistics, 1998, pp. 151–160.

[23] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec,
“Hadi: Mining radii of large graphs,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 5, no. 2, p. 8, 2011.

[24] A. Sridharan and T. Ye, “Tracking port scanners on the ip backbone,”
in Proceedings of the 2007 workshop on Large scale attack defense.
ACM, 2007, pp. 137–144.

[25] C. Lochert, B. Scheuermann, and M. Mauve, “Probabilistic aggregation
for data dissemination in vanets,” in Proceedings of the fourth ACM
international workshop on Vehicular ad hoc networks. ACM, 2007,
pp. 1–8.

[26] Q. Han, S. Du, D. Ren, and H. Zhu, “Sas: A secure data aggregation
scheme in vehicular sensing networks,” in Communications (ICC), 2010
IEEE International Conference on. IEEE, 2010, pp. 1–5.

[27] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in
European Symposium on Algorithms. Springer, 2003, pp. 605–617.

[28] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: algorith-
mic engineering of a state of the art cardinality estimation algorithm,”
in Proceedings of the 16th International Conference on Extending
Database Technology. ACM, 2013, pp. 683–692.

[29] Y. Chabchoub and G. Hébrail, “Sliding hyperloglog: Estimating car-
dinality in a data stream over a sliding window,” in Data Mining
Workshops (ICDMW), 2010 IEEE International Conference on. IEEE,
2010, pp. 1297–1303.

[30] Y. Zhao, S. Guo, and Y. Yang, “Hermes: An optimization of hyperloglog
counting in real-time data processing,” in Neural Networks (IJCNN),
2016 International Joint Conference on. IEEE, 2016, pp. 1890–1895.

[31] “Intuition of poissonization,” https://math.stackexchange.com/questions/
721195/poissonization-and-intuition.

[32] “Definition of mellin transform,” https://en.wikipedia.org/wiki/Mellin
transform.

182

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:30:17 UTC from IEEE Xplore. Restrictions apply.

APPENDIX A. EXPONENTIAL GENRATING FUNCTION

In this appendix, we give the definition of generating func-

tion, exponential generating function, multivariable generating

function and multivariable exponential generating function.

Because they can usually be represented in a close form,

they are often used to store large information about sequence,

and solve combination problems. We use generating function

and multivariable exponential generating function to derive

the expectation and variance of Refined LogLog estimation in

Section IV.

Definition 1: Generating function of a sequence an is a

function, whose coefficient of xn term is an.

Gan(x) = a0 + a1x+ a2x
2 + · · ·+ aix

i + · · ·

Definition 2: Exponential generating function of a sequence

an is a function, whose coefficient of xn term is an/n!.

Gan
(x) = a0 + a1x+ a2x

2/2! + · · ·+ aix
i/i! + · · ·

Definition 3: Multivariable generating function of multi-

dimensional sequences an0,n1,...,nk
is a function, whose coef-

ficient of xn0
0 xn1

1 · · ·xnk
k term is an0,n1,...,nk

. Bivariate gener-

ating function is multivariable generating function with k = 2.

Gan,m
(x, y) =a0,0 +a0,1y +a20, 2y

2 + · · ·
a1,0x +a1,1xy +a21, 2xy

2 + · · ·
a2,0x

2 +a2,1x
2y +a22, 2x

2y2 + · · ·
· · ·

Definition 4: Multivariable exponential generating func-

tion of multi-dimensional sequences an0,n1,...,nk
is a

function, whose coefficient of xn0
0 xn1

1 · · ·xnk
k term is

an0,n1,...,nk
/(n0!n1! · · ·nk!). Bivariate generating function is

multivariable generating function with k = 2.

Gan,m
(x, y) =a0,0 +a0,1y +a20, 2

y2

2!
+ · · ·

a1,0x +a1,1xy +a21, 2x
y2

2!
+ · · ·

a2,0
x2

2!
+a2,1

x2

2!
y +a22, 2

x2

2!

y2

2!
+ · · ·

· · ·

APPENDIX B. POISSONIZATION AND DEPOISSONIZATION

In this appendix, we give the deinition of poissonization and

depoissonization. Then we give a intuitive explanation.

Definition 5: Let ak(k ∈ N) be a sequence of independent

variables with Bernoulli distribution B(p). Let N be a ran-

dom variable, and define N ′ :=
∑

k=1···N ak, and N ′′ :=∑
k=1···N (1 − ak). If N obeys Poisson distribution P (λ),

then N ′ and N ′′ are independent random variables, and obey

Poisson distribution P (λp) and P (λ(1−p)). Conversely, if N ′

and N ′′ are independent, then N obeys Poisson distribution.
An intuitive example [31] of this is that suppose that N

represents the number of customers who have arrived to a

store up to time t, and that ak is an indication of whether the

kth customer is male. Then N ′ counts up the number of male

customers and N ′′ counts up the number of female customers.

We can know that if the arriving customers obey Poisson

distribution, then the arriving male and female customers both

obey poissonization independently, vice versa.

APPENDIX C. MELLIN TRANSFORM

In this appendix, we give the definition of Mellin transform

and another version of definition in probability theory [32].

Definition 6: In mathematics, the Mellin transform is an

integral transform that may be regarded as the multiplicative

version of the two-sided Laplace transform. This integral

transform is closely connected to the theory of Dirichlet series,

and is often used in number theory, mathematical statistics,

and the theory of asymptotic expansions; it is closely related

to the Laplace transform and the Fourier transform, and the

theory of the gamma function and allied special functions.

The Mellin transform of a function f is

{Mf}(s) = φ(s) =

∫ ∞

0

xs−1f(x)dx

The inverse transform is

{M−1φ}(x) = f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sφ(s)ds

Definition 7: Let X be a random variable, X+ =
max{X, 0} be the positive part of it, and X− = max{X, 0}
be the negative part of it, then the Mellin transform of X is

defined as

MX(s) =

∫ ∞

0

xsdFX+(x) + γ

∫ ∞

0

xsdFX−(x),

where γ is a formal indeterminate with γ2 = 1. This transform

exists for all s in some complex strip D = {s : a ≤ Re(s) ≤
b} , where a ≤ 0 ≤ b.

Mellin transform is an important tool in probability theory,

the Mellin transform because it provides a convenient method

to study the distributions of products of random variables. The

distribution function FX of a random variable X is uniquely

determined by Mellin transform MX(s). The significance of

the Mellin transform in probability theory lies in the fact that

if X and Y are two independent random variables, then the

Mellin transform of their products is equal to the product of

the Mellin transforms of X and Y .

MXY (s) = MX(s)MY (s)

183

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 11,2023 at 05:30:17 UTC from IEEE Xplore. Restrictions apply.

